天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

納米顆粒強(qiáng)化及預(yù)處理脫毒促進(jìn)發(fā)酵聯(lián)產(chǎn)氫氣和甲烷

發(fā)布時(shí)間:2018-06-23 18:01

  本文選題:氫氣 + 甲烷; 參考:《浙江大學(xué)》2016年博士論文


【摘要】:利用生物質(zhì)為原料通過(guò)微生物發(fā)酵方法制取氫氣是一種環(huán)境友好、可再生、低能耗的氫能生產(chǎn)方式。本文以纖維素生物質(zhì)為重點(diǎn)研究對(duì)象,探究了納米顆粒強(qiáng)化胞間電子傳遞促進(jìn)發(fā)酵產(chǎn)氫氣和甲烷機(jī)理,利用硼氫化鈉選擇性還原醛類(lèi)抑制物激活并促進(jìn)暗發(fā)酵產(chǎn)氫,揭示了蒸汽稀酸預(yù)處理纖維素生物質(zhì)的微觀理化特性,顯著提高了生物質(zhì)暗光耦合產(chǎn)氫以及聯(lián)產(chǎn)甲烷的能量轉(zhuǎn)化效率。研究了納米三氧化二鐵對(duì)產(chǎn)氫菌群微觀形態(tài)結(jié)構(gòu)及代謝途徑的影響機(jī)理。三氧化二鐵促進(jìn)了產(chǎn)氣腸桿菌細(xì)胞間的電子傳遞和氫酶活性,增強(qiáng)了乙酸代謝產(chǎn)氫途徑(C6H1206+ 2H20→2CH3COOH+2C02+4H2↑),弱化了乙醇代謝的競(jìng)爭(zhēng)途徑(C6H1206→2C2H5OH+ 2C02).當(dāng)添加200 mg/L的納米三氧化二鐵時(shí),葡萄糖和木薯淀粉的發(fā)酵產(chǎn)氫率分別提高了17.0%和63.1%,峰值產(chǎn)氫速率分別提高了35.8%和36.4%。纖維素生物質(zhì)預(yù)處理產(chǎn)生了呋喃類(lèi)(糠醛、5-羥甲基糠醛)和酚類(lèi)(香草醛、丁香醛)醛基抑制物,導(dǎo)致峰值產(chǎn)氫速率顯著降低,產(chǎn)氫峰值時(shí)間和遲滯時(shí)間顯著延遲,實(shí)驗(yàn)表明酚類(lèi)比呋喃類(lèi)抑制物更顯著地抑制了葡萄糖暗發(fā)酵產(chǎn)氫過(guò)程。原因是醛基在暗發(fā)酵中被還原為醇類(lèi):R-CHO+2NADH→R-CH20H+2NAD+,大量消耗了氫氣生成過(guò)程所需的還原力NADH.提出利用硼氫化鈉選擇性還原呋喃類(lèi)和酚類(lèi)醛基有毒抑制物,添加硼氫化鈉30 mM對(duì)糠醛、5-羥甲基糠醛、香草醛和丁香醛的脫除效率分別達(dá)到96.7%、91.7%、77.3%和69.3%,暗發(fā)酵產(chǎn)氫率從0顯著提高到193.3 mL/g還原糖(產(chǎn)氫恢復(fù)率達(dá)到99.3%)。硼氫化鈉脫除醛基抑制物的還原反應(yīng)機(jī)理為:4R-CHO+NaBH4+2H20→4R-CH20H+ NaB02,避免了醛基抑制物降解對(duì)產(chǎn)氫還原力NADH的大量消耗,有效激活并促進(jìn)了暗發(fā)酵產(chǎn)氫反應(yīng)。首次提出納米石墨烯促進(jìn)產(chǎn)氫菌與甲烷菌的種間電子傳遞以強(qiáng)化暗發(fā)酵產(chǎn)甲烷。SEM分析表明添加石墨烯后通過(guò)納米導(dǎo)線強(qiáng)化了產(chǎn)酸菌和甲烷菌之間的物質(zhì)交換和電子傳遞。代謝途徑分析表明石墨烯促進(jìn)了產(chǎn)氫菌利用乙醇產(chǎn)乙酸過(guò)程(CH3CH20H+H20→ CH3COOH+4e-+4H+)以及甲烷菌利用乙酸產(chǎn)甲烷過(guò)程(2CH3COOH→2CH4+2C02),顯著強(qiáng)化了產(chǎn)氫菌與甲烷菌的種間電子傳遞產(chǎn)甲烷(4e-+4H++1/2CO2→1/2CH4+H20)。添加納米石墨烯1g/L使甲烷產(chǎn)率提高了25.0%,產(chǎn)甲烷峰值速率提高了19.5%。將加熱稀酸預(yù)處理的豬糞廢棄物進(jìn)行暗光發(fā)酵耦合產(chǎn)氫以及聯(lián)產(chǎn)甲烷。暗發(fā)酵產(chǎn)氫率達(dá)到71.8 mL H2/g TVS。利用沸石處理暗發(fā)酵尾液使過(guò)量銨離子抑制物選擇性脫除率達(dá)到90.6%,然后接種光合細(xì)菌得到光發(fā)酵產(chǎn)氫率為175.9 mL H2/g TVS。最后接種甲烷菌發(fā)酵得到甲烷產(chǎn)率為87.2 mL CH4/g TVS。通過(guò)三階段暗發(fā)酵和光發(fā)酵耦合產(chǎn)氫氣以及聯(lián)產(chǎn)甲烷,使豬糞的能量轉(zhuǎn)化效率由單純產(chǎn)氫氣的13.7%顯著提高至氫氣和甲烷聯(lián)產(chǎn)的29.8%。揭示了木薯渣等纖維素生物質(zhì)經(jīng)蒸汽稀酸預(yù)處理后的微觀理化結(jié)構(gòu)及暗發(fā)酵聯(lián)產(chǎn)氫氣甲烷特性。微觀測(cè)試表明:木薯渣經(jīng)蒸汽稀酸預(yù)處理后產(chǎn)生大量不規(guī)則碎片(-23 μm)和部分微孔結(jié)構(gòu)(~6μm),纖維素細(xì)胞壁產(chǎn)生明顯分層(-0.2 μm),由于無(wú)定型結(jié)構(gòu)遭到破壞導(dǎo)致纖維素結(jié)晶度由23.7提高到25.9。再經(jīng)纖維素酶水解后使木薯渣的暗發(fā)酵產(chǎn)氫率提高到102.1 mL H2/g TVS,聯(lián)產(chǎn)甲烷率提高93.2 mL CH4/g TVS。利用50升-500升的中試發(fā)酵罐研究了預(yù)處理木薯渣的半連續(xù)流聯(lián)產(chǎn)氫氣和甲烷,穩(wěn)定期得到氫氣產(chǎn)率為72.0mL/gTVS,甲烷產(chǎn)率為295.4 mL/gTVS。設(shè)計(jì)了木薯渣聯(lián)產(chǎn)氫氣和甲烷的50001113發(fā)酵罐示范工程方案,通過(guò)甲烷罐(37℃,pH=7.5)沼液回流為產(chǎn)氫罐(55℃,pH=5.5)補(bǔ)充了大量的產(chǎn)氫酸化菌群,并提供合適堿度避免產(chǎn)氫罐過(guò)度酸化,從而實(shí)現(xiàn)長(zhǎng)期連續(xù)穩(wěn)定地聯(lián)產(chǎn)氫氣和甲烷。
[Abstract]:Using biomass as raw material to produce hydrogen by microbial fermentation is a kind of environmentally friendly, renewable and low energy production hydrogen energy production method. This paper focuses on the research object of cellulose biomass, and explores the mechanism of promoting hydrogen and methane production by enhanced intercellular electron transfer by nano particles, and the selective reduction of aldehydes by sodium borohydride. The system activates and promotes hydrogen production by dark fermentation, reveals the microscopic physical and chemical properties of cellulose biomass pretreated by steam dilute acid, improves the hydrogen production of biomass and the energy conversion efficiency of methane production, and studies the mechanism of the microstructure and metabolic pathways of the nanoscale ferric oxide on the hydrogen producing bacteria. The electron transfer and hydrogenase activity between the cells of Enterobacteriaceae can be promoted, the hydrogen production pathway of acetic acid (C6H1206+ 2H20 to 2CH3COOH+2C02+4H2) is enhanced, and the competitive approach of ethanol metabolism is weakened (C6H1206 to 2C2H5OH+ 2C02). When adding 200 mg/L nanoscale ferric oxide, the hydrogen production rate of glucose and cassava starch is increased, respectively. 17% and 63.1%, the peak hydrogen production rate increased by 35.8% and 36.4%. cellulose biomass pretreatment produced furan (furfural, 5- hydroxymethyl furfural) and phenols (vanillin, Ding Xiangquan) aldehyde inhibitor, which resulted in a significant reduction in the peak hydrogen production rate and a significant delay in the peak hydrogen production time and delay time. The process more significantly inhibits the process of hydrogen production in the dark fermentation of glucose. The reason is that aldehyde groups are reduced to alcohols in dark fermentation: R-CHO+2NADH to R-CH20H+2NAD+, a large amount of reducing force needed to produce hydrogen production process NADH. is proposed to use sodium borohydride to selectively restore furan and phenolic aldehyde group of toxic inhibitor, adding sodium borohydride 30 mM pairs. The removal efficiency of furfural, 5- hydroxymethyl furfural, vanillin and Ding Xiangquan reached 96.7%, 91.7%, 77.3% and 69.3% respectively. The hydrogen production rate of dark fermentation increased from 0 to 193.3 mL/g reducing sugar (the recovery rate of hydrogen production reached 99.3%). The reduction reaction mechanism of sodium borohydride removal of aldehyde inhibitor was 4R-CHO+NaBH4+2H20 to 4R-CH20H+ NaB02, avoiding aldehyde group inhibition. The degradation of the product to the hydrogen reducing force of NADH is a large amount of consumption, which effectively activates and promotes the reaction of hydrogen production in dark fermentation. It is first proposed that nano graphene promotes the interspecific electron transfer of hydrogen producing bacteria and methanogens to strengthen the dark fermentation methane production by.SEM analysis, which indicates that the addition of graphene to the addition of graphene is used to strengthen the material between the acid producing bacteria and the methanogens. The metabolic pathway analysis showed that graphene promoted the use of ethanol producing acetic acid by graphene (CH3CH20H+H20 to CH3COOH+4e-+4H+) and methane producing process (2CH3COOH to 2CH4+2C02) using acetic acid (2CH3COOH to 2CH4+2C02), which significantly enhanced the interspecific electron transfer methane production (4e-+4H++1/2CO2 to 1/2CH4+H20) of hydrogen producing bacteria and methanogens. The nano graphene 1g/L increased the methane yield by 25%, the peak rate of methane production increased by 19.5%., and the pig manure waste pretreated with dilute acid was coupled to hydrogen production and methane production. The hydrogen production rate of dark fermentation reached 71.8 mL H2/g TVS., and the selective removal rate of the excess ammonium ion inhibitor was reached by using zeolite to treat the dark fermented tail liquor. To 90.6%, then inoculated with photosynthetic bacteria, the hydrogen production rate of light fermentation was 175.9 mL H2/g TVS., and methane production was 87.2 mL CH4/g TVS. by inoculation of methanogens, and hydrogen production and methane production were produced by coupling of dark fermentation and light fermentation. The energy conversion efficiency of pig manure was increased from 13.7% of single pure hydrogen to hydrogen and armour. 29.8%. revealed the microscopic physical and chemical structure of cassava residue and other cellulose biomass after the pretreatment of steam dilute acid. The microtest showed that a large number of irregular fragments (-23 mu m) and some microporous structure (~ 6 m) were produced after the pretreatment of the steam dilute acid. Layer (-0.2 mu m), because the amorphous structure was destroyed, the cellulose crystallinity was increased from 23.7 to 25.9. and then by cellulase hydrolysis, the dark fermentation rate of cassava residue was increased to 102.1 mL H2/g TVS. The combined methane production rate increased by 93.2 mL CH4/g TVS. using 50 liters of 50 liters of -500 liters. The semi continuous flow of the pre treated cassava residue was studied. Hydrogen and methane are produced, the yield of hydrogen is 72.0mL/gTVS in the stable period and the methane yield is 295.4 mL/gTVS.. A demonstration project of 50001113 fermentor for hydrogen and methane production by cassava residue is designed. A large number of hydrogen producing acidification bacteria are supplemented by the methane tank (37, pH=7.5) to hydrogen production tank (55, pH=5.5), and the suitable alkalinity is avoided. The hydrogen tank is over acidified so as to achieve long-term continuous and stable production of hydrogen and methane.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TQ920.6;TQ116.2;TQ221.11

【相似文獻(xiàn)】

相關(guān)期刊論文 前7條

1 張國(guó)政;;產(chǎn)甲烷菌的一般特征探討[J];中國(guó)沼氣;1990年02期

2 李亞新;厭氧消化過(guò)程中甲烷菌的無(wú)機(jī)營(yíng)養(yǎng)需求[J];中國(guó)沼氣;1996年01期

3 張和笙,梁衛(wèi)紅;論甲烷菌及其在白酒發(fā)酵中的作用機(jī)理[J];釀酒科技;1996年06期

4 李亞新,楊建剛;微量金屬元素對(duì)甲烷菌激活作用的動(dòng)力學(xué)研究[J];中國(guó)沼氣;2000年02期

5 金銳;任南琪;郭婉茜;;利用微生物降解原油產(chǎn)甲烷氣能力和群落構(gòu)成研究[J];科技風(fēng);2013年18期

6 李亞新,董春娟;激活甲烷菌的微量元素及其補(bǔ)充量的確定[J];環(huán)境污染與防治;2001年03期

7 ;[J];;年期

相關(guān)會(huì)議論文 前8條

1 郭嫣秋;胡偉蓮;劉建新;;瘤胃甲烷菌及甲烷生成的調(diào)控[A];動(dòng)物生理生化學(xué)分會(huì)第八次學(xué)術(shù)會(huì)議暨全國(guó)反芻動(dòng)物營(yíng)養(yǎng)生理生化第三次學(xué)術(shù)研討會(huì)論文摘要匯編[C];2004年

2 孫鳳莉;墨鋒濤;李茜;鄭長(zhǎng)山;魏忠華;左曉磊;劉榮昌;;反芻動(dòng)物甲烷減量排放調(diào)控措施[A];冀農(nóng)杯2008“綠色奧運(yùn)”科技論文集[C];2008年

3 曹珍;廖新O,

本文編號(hào):2057948


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2057948.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)f28b3***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com