水泥分解爐燃料型NO_x形成影響因素及源頭防治研究
本文選題:水泥分解爐 + 燃料型氮氧化物; 參考:《華南理工大學(xué)》2016年博士論文
【摘要】:多年以來,我國(guó)水泥生產(chǎn)及消費(fèi)量一直高居世界首位。隨著大型水泥預(yù)分解窯的廣泛應(yīng)用,由水泥窯產(chǎn)生的氮氧化物已成為大氣NOx的第三大來源。水泥窯的燃料約60%是在溫度約900℃的分解爐燃燒,生成的氮氧化物基本上是燃料型氮氧化物。另外,利用廢棄物作煅燒水泥熟料的原燃料,使廢棄物資源化,具有十分重要的意義。但是隨著廢棄物廣泛地應(yīng)用于水泥生產(chǎn)中,也給水泥窯廢氣的排放帶來重要影響,包括對(duì)NOx形成的影響。為此,結(jié)合廢棄物在水泥窯中的應(yīng)用,研究煅燒水泥過程中燃料型NOx形成的影響因素,實(shí)現(xiàn)從源頭上有效控制水泥窯NOx排放,不僅具有科學(xué)意義,而且對(duì)環(huán)境保護(hù)也有重要價(jià)值。本論文通過實(shí)驗(yàn)室與工廠生產(chǎn)實(shí)際相結(jié)合的研究方法,通過量子化學(xué)數(shù)值計(jì)算、Fluent流體仿真、X射線光電子能譜分析(XPS)、氣相色譜-質(zhì)譜聯(lián)用分析、熱重差熱分析、熱重-紅外聯(lián)用分析、鹽酸萘乙二胺分光光度法等手段,研究了利用廢棄物煅燒水泥過程中氮氧化物的形成影響因素及源頭防治技術(shù),內(nèi)容包括原燃料中各種氮形態(tài)及其對(duì)氮氧化物形成的影響;水泥窯無害化處理脫水污泥及其對(duì)燃煤氮氧化物的影響;廢輪胎、廢人造革、廢真皮革對(duì)水泥窯燃料型氮氧化物排放的影響;水泥生料對(duì)燃料型氮氧化物形成的影響。通過研究取得了以下成果:(1)在分析了原燃料中氮形態(tài)的基礎(chǔ)上,研究了氮形態(tài)對(duì)燃料型NOx形成的差異。在900℃燃燒時(shí),原燃料中四類主要氮形態(tài)以廢真皮革的氨基酸氮熱穩(wěn)定性最差,其生成的燃料型NOx濃度最高,其次為煤吡咯氮和吡啶氮,而熱穩(wěn)定性最好、生成燃料型NOx最小的是廢合成革中的甲苯二異氰酸酯基團(tuán)。另外,相同條件下,燃煤生成氮氧化物的量會(huì)隨其吡咯氮含量增加而增加。因此,原燃料氮賦存形態(tài)的差異對(duì)燃料型NOx的形成產(chǎn)生明顯影響作用。(2)通過計(jì)算量子化學(xué)方法分析了吡咯、吡啶、氨基酸、甲苯二異氰酸酯等基團(tuán)受熱化學(xué)反應(yīng)過程。由量子化學(xué)Mulliken鍵布居數(shù)可得各氮形態(tài)的C-N鍵強(qiáng)度較弱,在受熱時(shí)會(huì)優(yōu)先發(fā)生斷裂,從而引發(fā)基團(tuán)的分解;由此計(jì)算反應(yīng)活化能從小至大依次是氨基酸氮吡咯氮吡啶氮甲苯二異氰酸酯基團(tuán)氮,而所對(duì)應(yīng)的熱穩(wěn)定性正好反之,聚合甲苯二異氰酸酯型氮最強(qiáng),其次為吡啶氮和吡咯氮,最差的是氨基酸氮。分解得到的含氮小分子產(chǎn)物影響NOx的形成,其中氨基酸氮分解得到NH3,吡啶氮的產(chǎn)物以HCN形式釋放,吡咯氮生成產(chǎn)物則包括了NH3和HCN,廢合成革聚合甲苯二異氰酸酯氮?jiǎng)t分解產(chǎn)生HCN。相同條件下,NH3的氧化反應(yīng)速率比HCN的大,當(dāng)燃燒時(shí),NH3的快速氧化更有利于氨基酸和吡咯的分解,使反應(yīng)向右進(jìn)行,從而也有更多的氮氧化物生成。(3)水泥窯應(yīng)用廢輪胎粉對(duì)NOx生成有好的抑制作用。雖然廢輪胎粉氮的形態(tài)與廢真皮革的相同,均是氨基酸氮為主,但在燃燒時(shí)氮的排放兩者明顯差別。分析結(jié)構(gòu)內(nèi)部元素表明,廢輪胎粉中的NOx還原性元素C、H含量遠(yuǎn)大于廢真皮革,而氧化性元素O卻很小。另一方面,TG-DSC曲線表明,物質(zhì)失重過程存在重疊區(qū)域。由于廢輪胎揮發(fā)分釋放比煤快。當(dāng)煤剛開始逸放揮發(fā)分并伴有少部分固定碳的燃燒時(shí),輪胎已釋放出大量CH4、C2H4、C2H2、CH和CO等還原性物質(zhì),為抑制燃煤NOx生成創(chuàng)造了有利條件。因此,廢輪胎粉NOx排放量遠(yuǎn)小于廢真皮革的,且廢輪胎粉與煤混合燃燒還能降低燃煤NOx排放量。(4)水泥生料對(duì)燃料型NOx排放綜合作用的結(jié)果是促進(jìn)NOx排放。在900℃條件下,水泥生料會(huì)促進(jìn)燃料型NOx的生成。水泥生料礦物組分對(duì)燃料型NOx促進(jìn)作用由大至小依次為CaOMgO Al2O3。而惰性組分Si02則因覆蓋燃料延緩熱傳遞而使NOx排放降低。另外,含S化合物對(duì)燃料型NOx生成具有一定的抑制作用,且受硫化合物結(jié)構(gòu)形態(tài)的影響。硫化亞鐵(FeS)和黃鐵礦(FeS2)對(duì)NOx的減排作用效果明顯,而硫酸鈣和亞硫酸鈣等硫酸鹽對(duì)NOx抑制作用效果較小。總之,水泥原料對(duì)NOx綜合作用的結(jié)果是促進(jìn)NOx排放。(5)城市生活污水污泥烘干過程中產(chǎn)生的尾氣不加以處理而直接排放會(huì)釋放出大量有害物質(zhì),造成大氣污染。其中烘干原狀脫水污泥的尾氣除含有芳香族、鹵代烴、正己烷等31類有機(jī)化合物外,還包含有NH3、H2S和硫醇等惡臭物質(zhì)。烘干以生物法除臭后的污泥所產(chǎn)生的尾氣其有機(jī)化合物種類數(shù)增加至34類,除芳香族、鹵代烴、正己烷等外,苯的種類數(shù)增加和還新增了胺類等化合物。(6)生活污水污泥烘干過程中產(chǎn)生的尾氣直接排放會(huì)釋放出大量有害物質(zhì),造成大氣污染。將污泥烘干產(chǎn)生的尾氣與空氣混合作為燃煤載氣,并輸送至900℃高溫爐內(nèi)助煤燃燒,能有效去除尾氣惡臭和芳香族化合物、鹵代烴等大分子化合物。并且與煤在空氣中燃燒時(shí)的煙氣NOx排放濃度相比,摻入污泥烘干的尾氣后,可以使燃煤煙氣NOx排放濃度降低。為此,先盡量降低污泥的含水率,再采用回收回轉(zhuǎn)窯筒體冷卻熱風(fēng)或部分熟料冷卻機(jī)熱風(fēng)等烘干城市污水污泥,其尾氣與原狀空氣同時(shí)入水泥分解爐燃燒,既消除尾氣的惡臭和有機(jī)物,又減少NOx排放。(7)氮含量相等,在相同實(shí)驗(yàn)條件下,由生活污水污泥產(chǎn)生燃料型NOx的濃度低于煤樣的。污泥中氮形態(tài)包括氨基酸氮、亞硝基化合物和苯胺三大類,其中氨基酸熱穩(wěn)定性差,且富含氧元素是其NOx生成的主要來源,但亞硝基化合物為轉(zhuǎn)化成更加穩(wěn)定的硝基化合物,競(jìng)爭(zhēng)了氧化性自由基,同時(shí),苯胺受熱快速釋放出胺基,均不利于NOx的形成。此外,污泥特殊的輕質(zhì)多孔結(jié)構(gòu)為NOx還原提供了有利的條件。燃燒時(shí)隨著揮發(fā)分的釋放,使污泥骨架形成了活性炭狀的多孔結(jié)構(gòu)。巨大的比表面積是良好的還原劑載體。當(dāng)與煙氣(包括NO、HCN、NH3等)接觸時(shí),煙氣隨CH4、C2H2、CiHi等碳?xì)浠衔、炭被吸附在多孔結(jié)構(gòu)表面,通過發(fā)生氣固和氣氣反應(yīng)使NO還原。綜合作用的結(jié)果使污泥產(chǎn)生燃料型NOx的濃度較低。(8)借助Fluent流體軟件模擬研究了生活污水污泥對(duì)分解爐NO生成和轉(zhuǎn)化過程的影響。模擬結(jié)果表明,生活污泥從分解爐中部噴入比從底部噴入對(duì)氮氧化物的減排效果更好。模擬結(jié)果在6000 t/d水泥生產(chǎn)線的雙噴騰分解爐得以證實(shí),在不影響生產(chǎn)的前提下,污泥從分解爐中部噴入比從底部噴入,氮氧化物減排幅度從18%提高至39%。水泥窯合理地協(xié)同處理廢棄物,既能廢物綜合利用,又可從源頭降低其氮氧化物排放。
[Abstract]:Over the years, the amount of cement production and consumption in China has been ranked first in the world. With the wide application of large cement precalciner kiln, nitrogen oxides produced by cement kiln has become the third largest source of atmospheric NOx. About 60% of cement kiln fuel is burning in calciner temperature of about 900 DEG C, nitrogen oxides generated basically is the type of fuel nitrogen oxide . in addition, the use of wastes as raw fuel burning of cement clinker, the waste of resources, it has very important significance. But with the waste is widely used in cement production, but also bring important influence to cement kiln emissions, including the impact on the formation of NOx. For this, combined with the application of waste in cement kiln the study of calcined Influence factors of fuel burning cement in the process of NOx formation, realize the effective control of NOx cement kiln emissions from the source, not only has scientific significance, but also has important value for environmental protection. This paper through laboratory and factory production research method of combining the numerical quantum chemical calculation, Fluent simulation, X ray photoelectric Sub spectrum analysis (XPS), the analysis of gas chromatography-mass spectrometry, thermogravimetric analysis and differential thermal analysis by TGA-FTIR analysis, naphthyl ethylenediamine dihydrochloride spectrophotometric method, was studied by using the influence factors and source control technology of nitrogen oxide waste cement calcination process, including a variety of nitrogen the original form of nitrogen oxide fuel Influence of formation of cement kiln; harmless disposal of dewatered sludge and its influence on coal nitrogen oxide; waste tire, wasteartificial leather, leather waste really influence on cement kiln fuel NOx emission; influence of cement raw material to fuel NOx formation. The study obtained the following results: (1) in the analysis the original fuel Based on the study of nitrogen forms, different nitrogen forms on fuel NOx formation. In 900 degree burns, the thermal stability of four kinds of amino acid nitrogen nitrogen to form the main raw material and fuel waste real leather is the worst, the highest concentration of fuel NOx formation, followed by coal and pyridine and pyrrole nitrogen, heat the best stability, formation of fuel NOx is the smallest waste Synthetic leather in the toluene diisocyanate group. In addition, under the same conditions, the amount of coal to produce nitrogen oxides with pyrrole nitrogen content increased. Therefore, the difference of raw fuel nitrogen forms on the formation of fuel NOx produced significant effect. (2) calculated by quantum chemical analysis methods of pyrrole, pyridine. Amino acid, toluene Diisocyanate groups such as chemical reaction heat. By quantum chemical Mulliken bond population the number of available C-N bond strength is weak the nitrogen form, firstly broken in when heated, causing the group decomposition; calculated activation energy from small to large are the amino acid nitrogen of nitrogen, the pyridine nitrogen nitrogen group of toluene diisocyanate, The thermal stability and the corresponding right on the other hand, the polymerization of toluene diisocyanate type nitrogen was the strongest, followed by pyridine and pyrrole nitrogen, amino acid nitrogen is the worst. The decomposed nitrogen containing small molecules influence the formation of NOx, which is decomposed into NH3 amino acid nitrogen, the pyridine nitrogen release products in the form of HCN, pyrrolic nitrogen production it includes NH3 And HCN synthetic leather waste, polymerization of toluene diisocyanate nitrogen produced from the decomposition of HCN. under the same conditions, the NH3 oxidation rate is bigger than HCN, when burned, rapid oxidation of NH3 is more conducive to the decomposition of amino acid and pyrrole, the reaction to right, thus there are more nitrogen oxides (3) cement production. Application of kiln waste tire powder production of NOx Good. Although the inhibitory effect of waste tire powder nitrogen with the same waste real leather, are amino acid nitrogen, but the obvious difference in the combustion emissions of nitrogen. The analysis of the internal structure of the elements show that the waste tire powder in the reduction of NOx element of C, the content of H is much larger than the real leather waste, and oxidation the element O is very small. On the other hand, TG-DSC curve The material shows that there is an overlap region. Because of the weight loss process of waste tire volatile release than coal quickly. When the coal began to release volatile and accompanied by a small part of the fixed carbon combustion, the tire has release large amounts of CH4, C2H4, C2H2, CH and CO and other reducing substances, creating favorable conditions for the suppression of coal NOx generation of waste tire powder. Therefore, NOx emissions are much Less than the real leather waste, and waste tire powder mixed with coal combustion can reduce emissions of coal-fired NOx. (4) the cement raw material emission comprehensive effect on fuel NOx results is to promote the emission of NOx. Under the condition of 900 DEG C, cement raw materials will promote the formation of fuel NOx. The raw cement mineral composition of fuel NOx promoted from big to small in the order of CaO MgO Al2O3. and inert component Si02 due to delay of heat transfer to cover fuel NOx emissions decreased. In addition, the compound containing S has an inhibitory effect on fuel NOx formation, and affected by the structure of sulfur compounds. Ferrous sulfide (FeS) and pyrite (FeS2) emission reduction effect of NOx significantly, and sulfuric acid calcium sulfate and calcium sulfite etc. The inhibition effect of salt on the smaller NOx. In short, the results of the comprehensive effect of cement raw material NOx is to promote the emission of NOx. (5) gas produced sludge drying process in city sewage is discharged directly without treatment will release a lot of harmful substances, air pollution caused by exhaust gas. The drying of dewatered sludge containing aromatic in undisturbed halogen family Hydrocarbon generation, n-hexane and 31 kinds of organic compounds, including NH3, H2S and thiol odors such as biological deodorization to exhaust drying. After the sludge produced by the type of organic compounds increased the number to 34, in addition to aromatic, halogenated hydrocarbon, n-hexane and so on, the number of species and also with the increase of benzene the new amine compounds such as sewage sludge (6). Gas generated in the drying process of the emission will release a lot of harmful substances, causing air pollution. Drying the sludge produced gas mixed with air as carrier gas and coal, transported to the 900 high temperature furnace a coal combustion, can effectively remove the exhaust odor and aromatic compounds, halogenated hydrocarbons and other compounds in coal and. Empty Compared with the NOx concentration in flue gas during combustion gas, exhaust gas mixed with sludge drying, can make flue gas NOx emission concentration decreased. Therefore, first try to reduce the water content of the sludge, then the recovery of rotary kiln cooling hot air or hot air drying part clinker cooling machine city sewage sludge, and the exhaust gas and the original air into the water Mud decomposition furnace combustion exhaust, can eliminate odor and organic matter, and reduce the emission of NOx. (7) the nitrogen content is equal, under the same experimental conditions, the concentration of fuel type NOx produced by sewage sludge is lower than that of coal. Amino acid nitrogen nitrogen including sludge, nitroso compounds and aniline in three categories, including poor thermal stability and rich in amino acids, Oxygen is the main source of NOx generation, but the nitroso compound is transformed into nitro compound is more stable, competitive oxidative free radicals, at the same time, the rapid release of amino aniline heating, are not conducive to the formation of NOx. In addition, the special structure of porous lightweight sludge provides favorable conditions for the reduction of NOx combustion. With the volatile The release of the sludge skeleton forming porous structure of activated carbon shape. Huge surface area is good. When the reducing agent carrier and flue gas (including NO, HCN, NH3 etc.) contact with flue gas, CH4, C2H2, CiHi and other hydrocarbons, carbon is adsorbed on the surface of porous structure, the occurrence of gas solid gas reaction to NO reduction result. The concentration of sludge fuel NOx is low. (8) using Fluent fluid software the effects of sewage sludge on the decomposition furnace NO generation and transformation process. The simulation results show that the sewage sludge from decomposing furnace is sprayed into the middle is better than the reduction of nitrogen oxides into the spray from the bottom. The simulation results in t/d 6000 the double cement production line Spouted Calciner is confirmed, without affecting the production, sludge from decomposing furnace is sprayed into the middle than from the bottom spray, nitrogen oxides emission reduction rate increased from 18% to 39%. cement kiln co processing waste reasonably, can the comprehensive utilization of waste, but also reduce the NOx emissions from the source.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:X781.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃漢生;從污水污泥中回收磷[J];工業(yè)用水與廢水;2001年01期
2 陳嘉愉;楊海英;;污水污泥高摻比量制磚工藝研究[J];中國(guó)水運(yùn)(下半月);2008年12期
3 王愛娜;王里沙;;把污水污泥灰加工成肥料[J];農(nóng)業(yè)環(huán)境與發(fā)展;1985年01期
4 李愛民,王志,魏礫宏,蔡九菊;污水污泥在流化床內(nèi)燃燒特性的試驗(yàn)研究[J];沈陽(yáng)航空工業(yè)學(xué)院學(xué)報(bào);2001年04期
5 李愛民,曲艷麗,楊子賢,李潤(rùn)東;污水污泥干燥過程中表觀形態(tài)變化及水分析出特性[J];化工學(xué)報(bào);2004年06期
6 易玉敏;寧平;瞿廣飛;楊月紅;;污水污泥裂解技術(shù)研究進(jìn)展[J];云南化工;2008年05期
7 錢覺時(shí);鄧成;陳平;王智;羅暉;陳偉;;三峽庫(kù)區(qū)生活污水污泥的建材利用途徑分析[J];三峽環(huán)境與生態(tài);2009年01期
8 陳嘉愉;吳學(xué)偉;;污水污泥有機(jī)調(diào)質(zhì)濃縮和無機(jī)調(diào)質(zhì)脫水工藝研究[J];環(huán)境工程學(xué)報(bào);2009年03期
9 劉慶余;劉媛;李輝;;大港污水污泥用于綠地的可行性研究[J];環(huán)境衛(wèi)生工程;2010年01期
10 黃小蘭;陳建耀;;微生物應(yīng)用于污水污泥處理的研究[J];亞熱帶資源與環(huán)境學(xué)報(bào);2010年01期
相關(guān)會(huì)議論文 前10條
1 李濤;解立平;吳霞;趙立新;;污水污泥空氣氣化特性的研究[A];中國(guó)環(huán)境科學(xué)學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集(第一卷)[C];2009年
2 牛姍姍;張亞娟;;利用橙廢物凝膠和酸從焚燒污水污泥灰中吸附和浸出磷[A];2012中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第三卷)[C];2012年
3 徐進(jìn);;污水污泥——可用作替代能源的新資源[A];全國(guó)排水委員會(huì)2012年年會(huì)論文集[C];2012年
4 周立祥;廖岳華;柏雙友;熊慧欣;王世梅;;污水污泥生物瀝浸處理中次生礦物的形成及其環(huán)境學(xué)意義[A];第五屆全國(guó)環(huán)境化學(xué)大會(huì)摘要集[C];2009年
5 陳祥;包兵;張惠心;;不同種類污水污泥對(duì)三種花卉生理特性的影響[A];2013中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第八卷)[C];2013年
6 解慶林;王敦球;張學(xué)洪;李金城;;污水污泥資源化研究[A];廣西環(huán)境科學(xué)學(xué)會(huì)2002—2003年度學(xué)術(shù)論文集[C];2003年
7 侯秀;徐東全;鄭傳健;楊洋;宋雯雯;趙樂軍;;天津市中心城區(qū)污水污泥處置方案的探討[A];2010年全國(guó)給水排水技術(shù)信息網(wǎng)年會(huì)論文集[C];2010年
8 佘躍惠;張凡;舒福昌;張學(xué)禮;王正良;周玲革;趙勇;趙立平;;油田污水污泥中以液蠟和聚丙烯酰胺(PAM)為營(yíng)養(yǎng)源的微生物群落及功能分析[A];首屆全國(guó)微生物基因組學(xué)學(xué)術(shù)研討會(huì)會(huì)程與論文摘要集[C];2006年
9 陳偉;;高含水率污水污泥復(fù)合頁(yè)巖制備輕質(zhì)陶粒研究[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
10 婁性義;;關(guān)于污水污泥一體化處理處置的探討[A];2012(第四屆)上海水業(yè)熱點(diǎn)論壇論文集[C];2012年
相關(guān)重要報(bào)紙文章 前9條
1 徐朝暉;義烏將用污水污泥燒制節(jié)能磚[N];金華日?qǐng)?bào);2007年
2 本報(bào)記者 袁天志;我省污水污泥實(shí)現(xiàn)資源化利用[N];貴州日?qǐng)?bào);2011年
3 鄧芝蘭 記者 程家富;“電鍍廢渣就是我的金礦”[N];上饒日?qǐng)?bào);2006年
4 記者 喬明亮 通訊員 裴振龍 周靳;臨汾:治理成效顯著 污水污泥成寶[N];山西日?qǐng)?bào);2006年
5 記者 夏新萍;烏石化分公司從污水污泥中淘金[N];中國(guó)石油報(bào);2003年
6 記者 張鳴岐 通訊員 張軍方馨遠(yuǎn);污水污泥變廢為寶[N];天津日?qǐng)?bào);2006年
7 田軍;污水污泥處理指標(biāo)下達(dá)[N];中國(guó)環(huán)境報(bào);2011年
8 記者 覃燕妮 通訊員 李清明;我市污水污泥全部實(shí)現(xiàn)無害化處理[N];三峽日?qǐng)?bào);2008年
9 記者趙福欣;廣州關(guān)注污水污泥同步處理[N];中國(guó)化工報(bào);2003年
相關(guān)博士學(xué)位論文 前6條
1 羅暉;污水污泥頁(yè)巖建筑材料制備與性能研究[D];重慶大學(xué);2010年
2 張靈輝;水泥分解爐燃料型NO_x形成影響因素及源頭防治研究[D];華南理工大學(xué);2016年
3 左薇;污水污泥微波熱解制取燃料及微晶玻璃工藝與機(jī)制研究[D];哈爾濱工業(yè)大學(xué);2011年
4 張軍;微波熱解污水污泥過程中氮轉(zhuǎn)化途徑及調(diào)控策略[D];哈爾濱工業(yè)大學(xué);2013年
5 袁紹春;蚯蚓處理污水污泥工藝及蚯蚓糞土地利用研究[D];重慶大學(xué);2012年
6 張國(guó)豐;北京市污水污泥處理的環(huán)境和經(jīng)濟(jì)影響動(dòng)態(tài)模擬[D];中國(guó)地質(zhì)大學(xué)(北京);2014年
相關(guān)碩士學(xué)位論文 前10條
1 蘇磊;基于海洋傾倒目的之污水污泥化學(xué)分析及生物毒性研究[D];上海海洋大學(xué);2015年
2 王涵;污水污泥熱處理后重金屬的賦存形態(tài)與浸出特性研究[D];黑龍江大學(xué);2015年
3 馬蜀;城市污水處理廠污水污泥能值測(cè)定分析研究[D];重慶大學(xué);2007年
4 周華;污水污泥熱解特性研究[D];上海交通大學(xué);2011年
5 唐汝江;污水污泥與煤混合燃燒和熱解的試驗(yàn)研究[D];華中科技大學(xué);2005年
6 萬(wàn)立國(guó);添加物輔助微波高溫?zé)峤馕鬯勰喾磻?yīng)條件的優(yōu)化研究[D];哈爾濱工業(yè)大學(xué);2006年
7 雷一楠;污水污泥燒制陶粒對(duì)重金屬固化效果的試驗(yàn)研究[D];重慶大學(xué);2009年
8 謝爽;利用污水污泥和高濃度二氧化碳培養(yǎng)海洋微藻技術(shù)研究[D];中國(guó)海洋大學(xué);2010年
9 陳潔蕓;污水污泥中污染物浸出影響因素研究[D];上海海洋大學(xué);2014年
10 陳嘉愉;污水污泥有機(jī)調(diào)質(zhì)濃縮與無機(jī)調(diào)質(zhì)脫水工藝研究[D];廣州大學(xué);2009年
,本文編號(hào):2048068
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2048068.html