低維鎳納米結(jié)構(gòu)材料的綠色和簡(jiǎn)易制備工藝與磁性能
本文選題:Ni納米線 + 滴注法; 參考:《安徽工業(yè)大學(xué)》2017年碩士論文
【摘要】:通過(guò)納米材料結(jié)構(gòu)和形態(tài)的可控制備,來(lái)裁剪材料的物理、化學(xué)和機(jī)械性能,已成為材料科學(xué)發(fā)展的一個(gè)重要前沿研究課題。由低維納米結(jié)構(gòu)單元(零維、一維、二維納米材料)構(gòu)筑而成的多級(jí)納米結(jié)構(gòu)材料,因?yàn)樗鼈儶?dú)特的結(jié)構(gòu)-性能依賴(lài)性,在電子、磁傳感器、靶向藥物載體等生物醫(yī)學(xué)領(lǐng)域的出色應(yīng)用而備受關(guān)注。通常實(shí)現(xiàn)納米材料結(jié)構(gòu)與形貌的有效調(diào)控方法大多需要借助于各種軟和硬模板、表面活性劑、或外加磁場(chǎng)等輔助手段,合成方法既繁瑣、昂貴、又不環(huán)保,從而限制了它們的進(jìn)一步應(yīng)用。本文嘗試采用簡(jiǎn)易、綠色方法制備一維Ni納米線和碳包裹Ni納米材料,以獲得低維納米材料的優(yōu)化制備工藝。主要研究結(jié)果如下:一、一維鎳納米線的簡(jiǎn)易制備工藝與磁性能選擇乙二醇為溶劑,水合肼還原劑,在不借助外加輔助磁場(chǎng)和不添加表面活性劑條件下,采用改進(jìn)的滴注法,直接制備出一維Ni納米線,并系統(tǒng)研究了制備工藝參數(shù)(Ni~(2+)離子濃度、反應(yīng)溫度、堿濃度、和外加磁場(chǎng)強(qiáng)度等)對(duì)Ni納米線合成、結(jié)構(gòu)以及磁性的影響,主要研究結(jié)果如下:(1)Ni鹽濃度的影響:結(jié)果顯示,用簡(jiǎn)易的滴注法制備的Ni納米線形貌和磁性敏感地依賴(lài)于Ni鹽濃度的變化(0.05-0.7 mol/L)。當(dāng)濃度從0.05增加到0.3 mol/L時(shí),由絮狀Ni轉(zhuǎn)變?yōu)橐痪SNi納米線的數(shù)量增多,納米線長(zhǎng)度增長(zhǎng),表面凸起晶粒細(xì)化,導(dǎo)致晶體沿[111]晶軸取向度提高、表面原子磁矩有序度增強(qiáng),以及Ni納米線飽和磁化強(qiáng)度Ms增強(qiáng)。當(dāng)Ni鹽濃度提高到0.7 mol/L時(shí),納米線表面出現(xiàn)約10 nm厚的片狀微結(jié)構(gòu),部分納米線團(tuán)聚成塊狀,從而導(dǎo)致晶體沿[111]晶軸取向度降低、表面原子磁矩?zé)o序度增高,合成產(chǎn)物Ms下降。(2)堿濃度的影響:研究發(fā)現(xiàn),當(dāng)NaOH從0.3 g增加到1.2 g時(shí),由疏松絮狀的納米顆粒逐漸形成Ni納米線的數(shù)量增多,納米線縱橫比增大、表面變光滑。堿濃度的提高,促使Ni納米線沿[111]易磁化方向的取向度增高,飽和磁化強(qiáng)度增強(qiáng)。(3)反應(yīng)溫度的影響:當(dāng)反應(yīng)溫度較低(60℃)時(shí),只形成部分鎳納米線,表面存在刺狀納米顆粒。反應(yīng)溫度升高到80℃時(shí),Ni納米線數(shù)量增多、縱橫比增大。再繼續(xù)提高到100℃時(shí),鎳納米線變短,部分團(tuán)聚結(jié)塊,導(dǎo)致Ms顯著降低。(4)外加磁場(chǎng)的影響:外加磁場(chǎng)可以使Ni納米線變直,沿[111]易磁化方向的取向度顯著提高,在外加磁場(chǎng)強(qiáng)度為100 mT時(shí),飽和磁化強(qiáng)度Ms達(dá)到81.8 Am2·kg-1,相比塊體Ni材料的Ms(55 Am2·kg-1)高出近50%。二、碳包裹鎳納米材料的綠色制備工藝與其磁性能采用天然多元醇蓖麻油為溶劑,在不添加任何其它表面活性劑和催化劑的條件下,采用簡(jiǎn)易的二步法制備了碳包裹Ni納米顆粒,研究了材料制備工藝參數(shù)(Ni~(2+)離子濃度、退火溫度、退火時(shí)間等)對(duì)Ni納米顆粒合成的影響規(guī)律,獲得了二步法制備納米級(jí)零價(jià)鎳的最佳工藝條件:(1)蓖麻油還原金屬Ni鹽分兩個(gè)階段:第一階段是液相化學(xué)反應(yīng),在此階段,蓖麻油酸中的陰離子型活性官能團(tuán)吸附Ni~(2+)離子,形成Ni的前驅(qū)體中間物;第二階段是濕法化學(xué)還原反應(yīng),經(jīng)低中溫退火將Ni~(2+)離子還原為零價(jià)Ni金屬,在此過(guò)程中蓖麻油酸長(zhǎng)分子鏈起到修飾作用,從而得到性能穩(wěn)定的金屬Ni納米晶材料。(2)Ni~(2+)離子濃度的影響:Ni金屬鹽濃度在3-5 mol/L時(shí),可以制備純FCC-Ni納米顆粒,平均晶粒尺寸在28-35 nm之間,在低于3 mol/L或高于6 mol/L時(shí),金屬Ni易被氧化而生成NiO雜相。(3)退火溫度和時(shí)間的影響:在液相(~120℃)溫度下化學(xué)反應(yīng)2 h,再經(jīng)400℃退火1-2 h,可以制備出非晶態(tài)碳包裹的零價(jià)Ni納米晶顆粒。在超出以上制備工藝參數(shù)范圍時(shí),還原出的金屬Ni納米晶易被氧化而生成NiO雜相。(4)磁性測(cè)量表明,碳包裹Ni納米顆粒的飽和磁化強(qiáng)度Ms隨Ni鹽濃度及退火時(shí)間的提高而增強(qiáng),最高值Ms=11 Am2·kg-1。該值比近期文獻(xiàn)報(bào)道的用蓖麻油制備N(xiāo)i納米棒的最高M(jìn)s~3 Am2·kg-1高出數(shù)倍。采用該方法制備的金屬鎳產(chǎn)量相對(duì)低,但Ni納米晶的矯頑力可達(dá)Hc~16.4 kA/m,比體塊Ni矯頑力有明顯的增強(qiáng)。
[Abstract]:The structure and morphology controlled preparation of nano materials to cut material, physical, chemical and mechanical properties, has become an important frontier research topic in the development of material science. By the low dimensional nano structure unit (zero dimensional, one-dimensional, two-dimensional nano materials) hierarchical nanostructure material form, because of their unique dependence the structure and properties And in the electronic, magnetic sensor, excellent application to target biomedical fields such as drug carrier and concern. Most often need the help of all kinds of soft and hard template method to achieve effective control of the morphology and structure of nano materials, surface active agent, or other external magnetic field assistant, synthesis method is complicated, expensive, and not environmental protection thus, the limit For their further development. This paper tries to use the simple preparation of one-dimensional Ni nanowires and carbon coated Ni nano material green method, preparation process to obtain the optimization of preparation of low dimensional nanomaterials. The main results are as follows: first, one-dimensional Ni nanowires with simple preparation process and magnetic properties of selected ethylene glycol as solvent. Hydrazine hydrate reduction agent in By means of external magnetic field and adding surfactant conditions by dripping method, the direct preparation of one-dimensional Ni nanowires, and researched the preparation technology parameters (Ni~ (2+) ion concentration, reaction temperature, alkali concentration, and external magnetic field intensity) on the synthesis of Ni nano line structure and the magnetic effect, the main results are as follows: ( 1) effects of Ni salt concentration: the results showed that changes in simple infusion of prepared Ni nanowires depends sensitively on the morphology and magnetic properties of Ni salt concentration (0.05-0.7 mol/L). When the concentration increased from 0.05 to 0.3 mol/L, the number of change from Ni as the flocculent of one-dimensional Ni nanowires increased, nanowires the length of growth, raised surface grain refinement, lead crystal The improved [111] crystal axis orientation, surface atomic magnetic moment order enhancement, and Ni nanowires with the saturation magnetization of Ms increased. When Ni concentration increased to 0.7 mol/L, about 10 nm thick sheet structure micro nano wire surface, nano line aggregate block, resulting in crystals along the [111] crystallographic axis orientation reduced surface atomic magnetic moment disorder The degree of increase of synthetic product Ms decreased. (2) effect of alkali concentration: the study found that when NaOH increased from 0.3 g to 1.2 g, the number of nanoparticles by loose flocculent gradually formed Ni nanowires increased, the nanowire aspect ratio increases, the surface is smooth. The alkali concentration increased, the higher the degree of orientation Ni nanowires along the [111] direction of easy magnetization, saturation magnetization Strength. (3) the effect of reaction temperature when the reaction temperature is low (60 C), only form part of nickel nanowires, surface spinelike nanoparticles. The reaction temperature to 80 DEG C, Ni nanowires increased, the aspect ratio is increased. Further increased to 100 DEG C, Ni Na vermicelli shorter, some agglomerate cause Ms decreased significantly., (4) magnetic field The effects of applied magnetic field can make the Ni nanowires straight along the [111] direction of easy magnetization orientation degree is greatly improved, when the external magnetic field strength is 100 mT, the saturation magnetization of Ms reached 81.8 Am2 - kg-1, compared to bulk Ni materials Ms (55 Am2 kg-1) was nearly two 50%., carbon coated nickel nanomaterials green preparation process and their magnetic properties by Natural polyols of castor oil as solvent, without adding any other surfactant and catalyst, carbon encapsulated Ni nanoparticles were synthesized by two step method simple, the effects of the process parameters of material preparation (Ni~ (2+) ion concentration, annealing temperature, annealing time) on the effect of Ni nanoparticles synthesis, obtained by two step method Preparation of nano zero valent nickel optimum conditions: (1) reduction of metal salt of castor oil Ni two stages: the first stage is the chemical reaction in liquid phase, in this stage, the adsorption of anionic active functional groups in Ni~ ricinoleic acid (2+) ion, the formation of the precursor intermediates of Ni; the second stage is the wet chemical reduction in response, the low temperature annealing of Ni~ (2+) Reduced to zero valence metal ion Ni, in the process of ricinoleic acid long molecular chain to modification, so as to obtain the Ni metal nanocrystalline materials with stable performance. (2) Ni~ (2+) the effect of ion concentration: Ni metal salt concentration at 3-5 mol/L, to the preparation of pure FCC-Ni nanoparticles, the average grain size between 28-35 nm and below 3 mol/L or above 6 mol/L, Ni metal is easily oxidized to generate the phase of NiO. (3) the effect of annealing temperature and time in liquid phase (~120 C) chemical reaction temperature of 2 h, 1-2 h after annealing at 400 DEG C, can be prepared by amorphous carbon coated zero valent Ni nanocrystalline particles. The preparation process parameters in the range beyond the above, metal nanocrystalline Ni reduction is easy to be oxidized To generate the phase of NiO (4). Magnetic measurements show that the saturation magnetization Ms of carbon encapsulated Ni nanoparticles with Ni salt concentration and the annealing time increased, the maximum value of Ms=11 Am2 kg-1. the value than recently reported in the literature with castor oil Ni nanorods prepared by Ms~3 Am2 kg-1, the highest is several times higher. The preparation method of metal nickel production relative Low, but Ni nanocrystalline coercivity was Hc~16.4 kA/m, significantly enhanced than bulk Ni coercivity.
【學(xué)位授予單位】:安徽工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TB383.1;TQ138.13
【相似文獻(xiàn)】
相關(guān)博士學(xué)位論文 前10條
1 黎作鵬;體域納米網(wǎng)絡(luò)關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2014年
2 張正飛;一維氧化鎢納米材料無(wú)催化劑生長(zhǎng)的原位透射電鏡研究[D];浙江大學(xué);2017年
3 劉敬東;銅納米顆粒合成及其低溫?zé)Y(jié)互連行為研究[D];哈爾濱工業(yè)大學(xué);2017年
4 秦毓辰;鉑/金基新型納米結(jié)構(gòu)催化劑的水熱和微波合成及電催化性能研究[D];中國(guó)石油大學(xué)(北京);2016年
5 谷志遠(yuǎn);基于納米線的光學(xué)微腔和納米激光器[D];哈爾濱工業(yè)大學(xué);2016年
6 潘金彬;生物活性蛋白導(dǎo)向簡(jiǎn)易構(gòu)建新型高效安全的納米探針用于腫瘤的診療[D];天津醫(yī)科大學(xué);2017年
7 戴清源;基于乳清分離蛋白修飾的低環(huán)境敏感型納米顆粒構(gòu)建與穩(wěn)定機(jī)制[D];江南大學(xué);2017年
8 劉洋;多功能納米膠束體系聯(lián)合聲動(dòng)力與化療靶向治療肝癌的研究[D];天津醫(yī)科大學(xué);2017年
9 程羽佳;微、納米ZnO/LDPE復(fù)合材料結(jié)構(gòu)形態(tài)與介電性能研究[D];哈爾濱理工大學(xué);2017年
10 任勃;鎳鈷基氧化物納米纖維的靜電紡絲法制備及電化學(xué)性能研究[D];哈爾濱工程大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 卜立一;低維鎳納米結(jié)構(gòu)材料的綠色和簡(jiǎn)易制備工藝與磁性能[D];安徽工業(yè)大學(xué);2017年
2 楊秀娟;金納米簇的合成與性質(zhì)的研究[D];長(zhǎng)春理工大學(xué);2017年
3 孫怡文;銅鋅錫硫納米結(jié)構(gòu)的制備、相變與光電性能研究[D];合肥工業(yè)大學(xué);2017年
4 朱笑天;金納米棒的制備與修飾及其在環(huán)境污染物檢測(cè)中的應(yīng)用[D];鄭州大學(xué);2017年
5 任雪利;納米氣泡對(duì)污染物的吸附及其影響因素探究[D];上海師范大學(xué);2017年
6 孫彥文;基于材料堆積效應(yīng)的周期納米結(jié)構(gòu)加工機(jī)理及實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2017年
7 張弘;金屬-ZnO納米棒異質(zhì)結(jié)構(gòu)的表面增強(qiáng)拉曼效應(yīng)研究[D];哈爾濱工業(yè)大學(xué);2017年
8 楊陽(yáng);多級(jí)中空納米纖維負(fù)載型催化劑的設(shè)計(jì)合成及其催化性能研究[D];東北師范大學(xué);2017年
9 劉曉慧;硅表面納米結(jié)構(gòu)設(shè)計(jì)與計(jì)算[D];青島大學(xué);2017年
10 張杏;納米尺度下離子液體水滴電潤(rùn)濕行為的分子模擬計(jì)算研究[D];蘭州大學(xué);2017年
,本文編號(hào):2046370
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2046370.html