微生物燃料電池陰極催化劑雙核酞菁鈷的結(jié)構(gòu)及性能優(yōu)化
發(fā)布時(shí)間:2018-06-02 00:31
本文選題:微生物燃料電池 + 雙核酞菁鈷; 參考:《華南理工大學(xué)》2015年碩士論文
【摘要】:微生物燃料電池(microbial fuel cells,MFCs)是利用污水中微生物作為生物催化劑降解廢水中有機(jī)物同時(shí)產(chǎn)生電能的裝置。該技術(shù)在能源緊缺的二十一世紀(jì)具有巨大的潛在應(yīng)用價(jià)值。在陰極,氧氣因便宜易得且產(chǎn)物綠色環(huán)保,成為一種理想的電子受體。在實(shí)現(xiàn)氧氣的還原反應(yīng)按理想四電子還原方式進(jìn)行的過程中,高性能陰極催化劑起著至關(guān)重要的作用。目前,研究使用最多的陰極催化劑為鉑,然而很多化學(xué)物質(zhì)(如HS-,C l-,CO)易引起鉑催化劑中毒,并且價(jià)格昂貴,儲(chǔ)量有限,限制了其大規(guī)模的商業(yè)化應(yīng)用。因此高效廉價(jià)的氧還原催化劑對(duì)于MFCs的研究具有重要的理論和現(xiàn)實(shí)意義。本文以生活污水為研究對(duì)象,用碳布作陽極,以雙核酞菁鈷(Bi-Co Pc)系列作為陰極催化劑應(yīng)用于單室空氣陰極微生物燃料電池(SCMFC),對(duì)Bi-Co Pc進(jìn)行結(jié)構(gòu)優(yōu)化,以期解決微生物燃料電池陰極催化劑性能差且價(jià)格昂貴的問題。本論文的具體研究結(jié)果概括如下:1)以Bi-Co Pc/C作為新型陰極催化劑,代替價(jià)格昂貴的Pt/C運(yùn)用于微生物燃料電池,優(yōu)化該系列催化劑電池反應(yīng)條件,包括:催化劑用量、底物乙酸鈉濃度、離子強(qiáng)度、p H值等最佳條件。當(dāng)催化劑用量1 mg/cm2、底物乙酸鈉濃度為2 g/L、氯化鈉濃度為0.1 M、p H值為6時(shí)微生物燃料電池產(chǎn)電性能最好。2)Bi-Co Pc的結(jié)構(gòu)優(yōu)化:將N i O和Co O復(fù)合到Bi-Co Pc表面,形成雙核酞菁鈷復(fù)合物。將合成的Bi-Co Pc/C-Ni O和Bi-Co Pc/C-Co O催化劑與鈷基催化劑Co Pc/C和Bi-Co Pc/C、氧化物催化劑Ni O和Co O作對(duì)比,并通過TEM、XPS對(duì)催化劑形貌和表面結(jié)構(gòu)進(jìn)行細(xì)致表征。XPS結(jié)果顯示,Ni O和Co O可以提高催化劑中氧和氮官能團(tuán)的含量。循環(huán)伏安和線性掃描伏安測(cè)試表明Bi-Co Pc/C-Ni O和Bi-Co Pc/C-Co O的氧還原峰位分別在-0.12 V和-0.22 V,優(yōu)于未復(fù)合的Bi-Co Pc/C。采用Bi-Co Pc/C-Ni O和Bi-Co Pc/C-Co O作為陰極催化劑的SCMFC最大功率密度分別為400和368 m W/m2,接近于商用Pt/C的最大功率密度(450 m W/m2),研究結(jié)果表明復(fù)合催化劑Bi-Co Pc/C-Ni O和Bi-Co Pc/C-Co O有望替代商用Pt/C催化劑。3)詳細(xì)研究了高溫焙燒對(duì)Bi-Co Pc催化劑的結(jié)構(gòu)和性能的影響。實(shí)驗(yàn)中采用的焙燒溫度分別為300、600、800、1000 oC。用SEM、TEM、XPS、XRD等對(duì)催化劑形貌、表面組成和結(jié)構(gòu)特征等進(jìn)行表征,并用循環(huán)伏安和線性掃描伏安對(duì)其電催化活性進(jìn)行測(cè)試。研究結(jié)果表明:在焙燒溫度為800度時(shí),Bi-Co Pc/C-800表現(xiàn)出最好的氧還原催化活性,這與Bi-Co Pc/C-800含有大量的吡咯型氮相關(guān)。所組裝的SCMFC最大功率密度隨焙燒溫度變化關(guān)系為:Bi-Co Pc/C-800Bi-Co Pc/C-1000Bi-Co Pc/C-600Bi-Co Pc/C-300Bi-Co Pc/C,其中,Bi-Co Pc/C-800作為陰極催化劑的SCMFC產(chǎn)生的最大功率密度為604 m W/m2,僅比Pt/C(724 m W/m2)低17%。這表明Bi-Co Pc/C-800具有優(yōu)良的電催化活性,可以期望替代Pt/C用于微生物燃料電池的陰極催化劑,使MFC大規(guī)模應(yīng)用成為可能。
[Abstract]:Microbial fuel cells (MFCs) is a device which uses microorganisms in wastewater as biocatalysts to degrade organic matter and generate electric energy. This technology has great potential application value in the energy shortage 21 century. At the cathode, oxygen is an ideal electron receptor because it is cheap and environmentally friendly. High performance cathode catalyst plays an important role in the process of oxygen reduction by ideal four-electron reduction. At present, platinum is the most widely used cathodic catalyst. However, many chemical substances (such as HS-Cl-CoC) are prone to lead to platinum catalyst poisoning, and their large scale commercial applications are limited due to their high cost and limited reserves. Therefore, the efficient and cheap oxygen reduction catalyst has important theoretical and practical significance for the study of MFCs. In this paper, using carbon cloth as anode and binuclear cobalt phthalocyanine (Bi-Co Pc) series as cathode catalysts, a single chamber air cathode microbial fuel cell (SCMFC) was used to optimize the structure of Bi-Co PC. The aim of this paper is to solve the problem of poor performance and high cost of cathode catalyst for microbial fuel cell. The specific research results of this thesis are summarized as follows: (1) Bi-Co Pc/C is used as a new cathode catalyst instead of expensive Pt/C for microbial fuel cells, and the reaction conditions of this series of catalyst batteries are optimized, including the amount of catalyst, The optimum conditions, such as the concentration of sodium acetate, ionic strength, pH value, etc. When the amount of catalyst is 1 mg / cm ~ (-2), the concentration of sodium acetate is 2 g / L, the concentration of sodium chloride is 0.1 mg / L, and the concentration of sodium chloride is 0.1 mg / h, the structure optimization of microbial fuel cell is the best. The structure of Bi-Co Pc composite with N i O and COO on the surface of Bi-Co Pc is optimized. A binuclear cobalt phthalocyanine complex is formed. The synthesized Bi-Co Pc/C-Ni O and Bi-Co Pc/C-Co O catalysts were compared with cobalt based catalysts Co Pc/C and Bi-Co PC / C, oxide catalysts Ni O and Co O. The morphology and surface structure of the catalyst were characterized by TEM XPS. XPS results showed that Ni O and Co O could increase the content of oxygen and nitrogen functional groups in the catalyst. Cyclic voltammetry and linear sweep voltammetry show that the oxygen reduction peaks of Bi-Co Pc/C-Ni O and Bi-Co Pc/C-Co O are at -0.12 V and -0.22 V, respectively, which is better than that of Bi-Co Pc / C without recombination. The maximum power density of SCMFC using Bi-Co Pc/C-Ni O and Bi-Co Pc/C-Co O as cathode catalysts is 400 and 368 MW / m2, respectively, which is close to the maximum power density of 450m W / m2 of commercial Pt/C. The results show that the composite catalysts Bi-Co Pc/C-Ni O and Bi-Co Pc/C-Co O may be substituted. Commercial Pt/C catalyst. 3) the effect of calcination at high temperature on the structure and performance of Bi-Co PC catalyst was studied in detail. The calcination temperature is 300600800 cu. The morphology, surface composition and structure of the catalyst were characterized by SEMMOTEMX PSX XRD. The electrocatalytic activity of the catalyst was measured by cyclic voltammetry and linear scanning voltammetry. The results show that Bi-Co Pc/C-800 exhibits the best catalytic activity for oxygen reduction at the calcination temperature of 800 鈩,
本文編號(hào):1966451
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1966451.html
最近更新
教材專著