水電解電催化材料合成、微結(jié)構(gòu)調(diào)控及性能研究
發(fā)布時(shí)間:2018-05-21 06:07
本文選題:質(zhì)子交換膜水電解 + 析氧反應(yīng); 參考:《北京科技大學(xué)》2016年博士論文
【摘要】:質(zhì)子交換膜(PEM)水電解制氫技術(shù)具有效率高、氣體純度高、安全可靠和壽命長(zhǎng)等優(yōu)點(diǎn),可與太陽(yáng)能、風(fēng)能發(fā)電等聯(lián)用作為儲(chǔ)能和能量轉(zhuǎn)化裝置,被視為未來(lái)能源和環(huán)境協(xié)調(diào)發(fā)展的重要選擇。然而,電解制氫過(guò)程電催化材料可逆性差、反應(yīng)動(dòng)力學(xué)過(guò)程緩慢以及微結(jié)構(gòu)、多相界面等因素不足制約了PEM水電解制氫的工業(yè)化進(jìn)程。為了降低電極反應(yīng)損失,有必要研制高活性、低成本的電催化材料。本論文以提高析氧與析氫電催化活性,提高催化層內(nèi)電催化材料利用率為目標(biāo),從組分與微結(jié)構(gòu)出發(fā),依據(jù)電催化反應(yīng)進(jìn)程,優(yōu)化電催化材料和催化層內(nèi)部的電子、質(zhì)子和氣液傳輸過(guò)程。主要開展了以下三個(gè)方面的研究工作:一、采用復(fù)合載體思路,探索載體材料組分與微結(jié)構(gòu)的可控制備方法,考察載體材料與活性組分交互支持作用對(duì)電催化活性的影響機(jī)理。從材料組分的角度,通過(guò)原位摻雜方法制備磷鎢酸銫與銻摻雜的二氧化錫不同比例的復(fù)合載體材料,該復(fù)合載體材料不僅具有較高的電子傳導(dǎo)能力和納米球狀結(jié)構(gòu),更重要的是自身具有質(zhì)子傳導(dǎo)性特性,有助于活性組分良好分散、新活性位點(diǎn)建立和催化層內(nèi)部質(zhì)子導(dǎo)電性的提高。從微結(jié)構(gòu)的角度,采用靜電紡絲的方法和后續(xù)煅燒過(guò)程制備了銻摻雜二氧化錫多孔結(jié)構(gòu)的納米纖維,相比納米顆粒結(jié)構(gòu),活性組分得到更好地分散,同時(shí)促進(jìn)活性組分表面荷電傳輸和氣、液傳輸過(guò)程。單池性能測(cè)試表明,相比純的二氧化銥催化劑,復(fù)合載體材料負(fù)載型電催化劑顯示出較好的析氧活性。80℃,2 A cm-2下,槽壓分別下降了60 mV和100 mV(催化劑載量:1.5 mg cm-2)。二、為降低歐姆損失和動(dòng)力學(xué)極化損失,在Nafion骨架中引入高質(zhì)子電導(dǎo)率的磷鎢酸銫,提升質(zhì)子導(dǎo)電相的電導(dǎo)率。進(jìn)一步優(yōu)化了催化層中質(zhì)子導(dǎo)電聚合物的添加量。催化層中電催化材料與質(zhì)子導(dǎo)電聚合物質(zhì)量比例為9:1時(shí),獲得了最佳的單池性能,80℃,2 Acm-2下,槽壓僅有1.59 V(催化劑載量:1.5 mg cm-2)。三、從以下兩個(gè)方面開展非貴金屬析氫電催化材料研究:首先,制備高分散的非晶態(tài)鎳磷粉體材料,并結(jié)合煅燒處理工藝,制得晶態(tài)鎳磷材料,研究晶相組成、晶體結(jié)構(gòu)及晶粒尺寸對(duì)析氫活性的影響。所制備的非晶態(tài)Ni-P具有良好的析氫活性,電流密度20 mA cm-2下過(guò)電位為262 mV vs NHE。經(jīng)300℃煅燒處理后所得的混晶結(jié)構(gòu)鎳磷粉體,析氫活性得到進(jìn)一步提升,電流密度20 mA cm-2下過(guò)電位為154 mV vs NHE(鎳磷催化劑載量為2 mg cm-2)。進(jìn)一步采用化學(xué)鍍的方法以不銹鋼氈為基體負(fù)載非晶態(tài)鎳磷合金。將其用于析氫電極,電流密度20 mA cm-2時(shí),過(guò)電位為224 mV vs HE。組裝單池后,80℃,電流密度為500 mA cm-2對(duì),槽壓為2.06 V(陽(yáng)極催化劑載量:1.5 mg cm-2,陰極鎳磷合金載量為10 mg cm-2)。
[Abstract]:Proton exchange membrane PEM) water electrolytic hydrogen production technology has the advantages of high efficiency, high gas purity, safety, reliability and long life. It can be used as energy storage and energy conversion device in conjunction with solar and wind power generation. Is regarded as the future energy and environment coordinated development important choice. However, the low reversibility of electrocatalytic materials, the slow reaction kinetics and the insufficiency of microstructure and multi-phase interface in the process of electrolysis hydrogen production have restricted the industrialization process of hydrogen production by PEM water electrolysis. In order to reduce the loss of electrode reaction, it is necessary to develop electrocatalytic materials with high activity and low cost. The aim of this thesis is to improve the electrocatalytic activity of oxygen evolution and hydrogen evolution, and to improve the utilization ratio of electrocatalytic materials in the catalytic layer. According to the process of electrocatalytic reaction, the electrocatalytic materials and the internal electrons in the catalytic layer are optimized according to the composition and microstructure. Proton and gas-liquid transport process. The main research work is as follows: 1. By using the idea of composite carrier, the controllable preparation method of the component and microstructure of the carrier material is explored, and the mechanism of the interaction support between the carrier material and the active component on the electrocatalytic activity is investigated. From the point of view of material composition, the composite carrier material with different proportion of cesium phosphotungstate and antimony doped tin dioxide was prepared by in-situ doping method. The composite carrier material not only has high electron conductivity and nanometer spherical structure. More importantly, it has proton conductivity, which is helpful to the good dispersion of active components, the establishment of new active sites and the improvement of proton conductivity in the catalytic layer. From the point of view of microstructure, antimony doped tin dioxide nanofibers with porous structure were prepared by electrospinning and subsequent calcination process. At the same time, the surface charge transport and gas and liquid transport of active components are promoted. The single cell performance test showed that compared with the pure iridium oxide catalyst, the composite supported electrocatalyst showed better oxygen evolution activity at 80 鈩,
本文編號(hào):1918054
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1918054.html
最近更新
教材專著