多級錯流旋轉(zhuǎn)填料床的氣相壓降特性研究
本文選題:多級錯流旋轉(zhuǎn)填料床 + 氣相壓降。 參考:《中北大學(xué)》2015年碩士論文
【摘要】:錯流旋轉(zhuǎn)填料床在氣體吸收、吹脫、除塵等單元過程的工業(yè)應(yīng)用表明,具有氣體處理能力大、壓降低、液相傳質(zhì)系數(shù)高、設(shè)備體積小、投資省等優(yōu)點,而被譽為化學(xué)工業(yè)中的“晶體管”。但現(xiàn)有結(jié)構(gòu)的錯流旋轉(zhuǎn)填料床對強化氣相傳質(zhì)效果不明顯,而不適用于氣-液膜,特別是氣膜控制的傳質(zhì)過程。因此,本實驗室開發(fā)了一種多級錯流旋轉(zhuǎn)填料床,將原來的單層填料設(shè)計成三層填料,即上、下兩層旋轉(zhuǎn),中間層靜止,起到強烈擾動氣流,從而達到強化氣相傳質(zhì)的作用。 旋轉(zhuǎn)填料床的氣相壓降直接關(guān)系到氣體的輸送能耗大小和工業(yè)應(yīng)用。目前,關(guān)于旋轉(zhuǎn)填料床的氣相壓降模型及實驗結(jié)果不具備通用性,特別是對本實驗室開發(fā)的新型旋轉(zhuǎn)填料床。因而,本文對其結(jié)構(gòu)、填料類型和操作參數(shù)對氣相壓降的影響規(guī)律進行了研究,以期優(yōu)化結(jié)構(gòu)、篩選填料,并為工業(yè)化設(shè)計提供參考。 本文主要選用了塑料鮑爾環(huán)和不銹鋼波紋絲兩種填料,以空氣-水為體系,分別考察了空床氣速、超重力因子及液體噴淋密度等操作參數(shù)和結(jié)構(gòu)對氣相壓降的影響規(guī)律,結(jié)果表明:塑料鮑爾環(huán)下的濕床總壓降隨超重力因子和液體噴淋密度的增大呈先減小后增大的趨勢,而上、下兩層填料的濕床壓降隨超重力因子的增加呈先減小后不變的趨勢,液體噴淋密度增加時,,總濕床壓降和各層濕床壓降均增大;不銹鋼波紋絲填料下的濕床總壓降隨超重力因子的增加呈升高規(guī)律,上、下兩層填料的濕床壓降隨超重力因子和液體噴淋密度的增加而增大,說明濕床壓降變化規(guī)律受到填料特性的明顯影響;而兩種填料下,總干床壓降和各層干床壓降均隨空床氣速、超重力因子的增大而升高,塑料鮑爾環(huán)的干、濕壓降高于不銹鋼波紋絲網(wǎng)的;中間層填料的濕床壓降均隨超重力因子和液體噴淋密度的增大而升高,從側(cè)面反映出超重力因子的增大和液體的引入會增加氣體的周向速率。 在上、下兩層填料均為塑料鮑爾環(huán)時,將中間層填料依次變?yōu)椋核芰硝U爾環(huán)、不銹鋼波紋絲和除去填料,對比三種情況下的各床層氣相壓降變化,研究表明:操作條件相同的情況下,隨著中間層填料的變換,下層填料干、濕床壓降基本不變,中間層填料干、濕床壓降減小,上層填料干床壓降增大,濕床壓降基本不變,說明中間層填料能起到消除氣旋的作用,且裝填的填料形體阻力越大效果越好。 通過理論分析和合理簡化,將多級錯流旋轉(zhuǎn)填料床氣相壓降分為:氣體進口、出口阻力壓降、以及氣體流經(jīng)上、中、下三層填料床層產(chǎn)生的壓降,經(jīng)推導(dǎo)得出多級錯流旋轉(zhuǎn)填料床的氣相總壓降模型為: 用塑料鮑爾環(huán)填料下的氣相壓降數(shù)據(jù)擬合模型系數(shù),得到模型計算結(jié)果的誤差范圍在20%以內(nèi),說明模型能夠較好地反映實驗結(jié)果以及預(yù)測氣相壓降的大小,可用來指導(dǎo)多級錯流旋轉(zhuǎn)填料床改進和工業(yè)化應(yīng)用。
[Abstract]:The industrial application of cross-flow rotating packed bed in unit processes such as gas absorption, blowing off and dust removal shows that it has the advantages of large gas treatment capacity, low pressure, high mass transfer coefficient of liquid phase, small equipment volume and low investment. And known as the chemical industry in the "transistor". However, the cross-flow rotating packed bed with existing structure has no obvious effect on the enhancement of gas phase mass transfer, but not suitable for the gas-liquid film, especially for the gas-film controlled mass transfer process. Therefore, a multi-stage cross-flow rotating packed bed has been developed in our laboratory. The original single-layer packing is designed as three layers of packing, that is, the upper and lower layers rotate, and the intermediate layer is still, which plays a strong disturbance to the gas flow, thus enhancing the mass transfer in the gas phase. The gas pressure drop of rotating packed bed is directly related to the energy consumption of gas transportation and industrial application. At present, the gas phase pressure drop model and experimental results of rotating packed bed are not universal, especially for the new rotating packed bed developed by our laboratory. Therefore, the effects of structure, packing type and operating parameters on gas pressure drop are studied in this paper, in order to optimize the structure, screen the packing and provide reference for industrial design. In this paper, two kinds of fillers, plastic Bauer ring and stainless steel corrugated wire, were used to investigate the influence of air velocity, hypergravity factor and liquid spray density on gas phase pressure drop in air-water system. The results show that the total wet bed pressure drop under the plastic Bauer ring decreases first and then increases with the increase of the hypergravity factor and the liquid spray density, while the wet bed pressure drop of the next two layers of fillers decreases first and then remains the same with the increase of the hypergravity factor. With the increase of liquid spray density, the total wet bed pressure drop and the wet bed pressure drop in each layer increase, and the total wet bed pressure drop under stainless steel corrugated wire filler increases with the increase of hypergravity factor. The wet bed pressure drop of the next two fillers increases with the increase of the hypergravity factor and the liquid spray density, which indicates that the variation of the wet bed pressure drop is obviously affected by the packing characteristics. The total dry bed pressure drop and each layer dry bed pressure drop increase with the increase of empty bed gas velocity and hypergravity factor. The dry and wet pressure drop of plastic Bauer ring is higher than that of stainless steel corrugated wire mesh. The wet bed pressure drop of the intermediate packing increases with the increase of the hypergravity factor and the spray density of the liquid. It can be seen from the side that the increase of the hypergravity factor and the introduction of the liquid will increase the circumferential rate of the gas. When the upper and lower layers of packing are all plastic Bauer rings, the intermediate packing will be changed into plastic Bauer ring, stainless steel corrugated wire and removal filler, and the pressure drop of each bed will be compared under three conditions. The results show that under the same operating conditions, with the change of the intermediate packing, the wet bed pressure drop is basically unchanged with the lower packing dry, the middle layer packing is dry, the wet bed pressure drop decreases, the upper packing dry bed pressure drop increases, and the wet bed pressure drop basically does not change. The results show that the interlayer packing can eliminate the cyclone, and the bigger the packing body resistance is, the better the effect is. Through theoretical analysis and reasonable simplification, the gas pressure drop of multi-stage cross-flow rotating packed bed is divided into three parts: gas inlet, outlet resistance pressure drop, and pressure drop caused by gas flowing through the upper, middle and lower layers of packed bed. The gas phase total pressure drop model of multi-stage cross-flow rotating packed bed is derived as follows: The model coefficient is fitted with the gas phase pressure drop data under the plastic Bauer ring packing, and the error range of the model calculation results is less than 20%, which shows that the model can reflect the experimental results and predict the gas pressure drop well. It can be used to guide the improvement and industrial application of multi-stage cross-flow rotating packed bed.
【學(xué)位授予單位】:中北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TQ051.1
【參考文獻】
相關(guān)期刊論文 前10條
1 劉有智;刁金祥;王賀;李鵬;康榮燦;焦緯洲;;超重力-臭氧法處理TNT紅水的試驗研究[J];火炸藥學(xué)報;2006年06期
2 李鵬;劉有智;李裕;王建偉;康榮燦;刁金祥;劉振河;;用旋轉(zhuǎn)填料床治理火炸藥廠的氮氧化物尾氣[J];火炸藥學(xué)報;2007年01期
3 李振虎,郭鍇,陳建銘,周緒美,鄭沖;旋轉(zhuǎn)填充床氣相壓降特性研究[J];北京化工大學(xué)學(xué)報(自然科學(xué)版);1999年04期
4 李華;錢智;姚遠;郭鍇;;N-甲基二乙醇胺/二乙醇胺在超重機中脫除H_2S的實驗研究[J];北京化工大學(xué)學(xué)報(自然科學(xué)版);2010年05期
5 王玉紅,賈志謙,陳建峰,鄭沖;超重力場中合成超微細CaCO_3的粒度控制研究[J];材料科學(xué)與工程;1998年02期
6 ;Study on Industrial Application of Hydrogen Sulfide Removal by Wet Oxidation Method with High Gravity Technology[J];China Petroleum Processing & Petrochemical Technology;2011年04期
7 楊卓如,陳運文,梅慈云,陳煥欽;填料塔內(nèi)的液體分布特性研究[J];高;瘜W(xué)工程學(xué)報;1990年04期
8 韓江則;劉有智;祁貴生;邱尚煌;李振興;;超重力環(huán)境下脫除工業(yè)氣體中H_2S的研究[J];工業(yè)安全與環(huán)保;2011年01期
9 柳來栓,謝國勇,劉有智;旋轉(zhuǎn)填料床處理含氨廢水實驗研究[J];華北工學(xué)院學(xué)報;2002年03期
10 郭鍇,柳松年,陳建峰,鄭沖;超重力工程技術(shù)應(yīng)用的新進展[J];化工進展;1997年01期
本文編號:1879374
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1879374.html