介質(zhì)粘度對泵作透平時性能換算影響的研究
本文選題:離心泵 + 液力透平 ; 參考:《蘭州理工大學(xué)》2017年碩士論文
【摘要】:能源是推動社會經(jīng)濟發(fā)展的主要動力,同時也是可持續(xù)發(fā)展的有力保證。目前人類面臨的突出問題主要是能源短缺與社會經(jīng)濟發(fā)展之間的矛盾,因此合理的應(yīng)用能源是目前面臨的重要問題。而液力透平作為一種能量回收設(shè)備,能夠?qū)α黧w介質(zhì)中的動能進行提取,在生產(chǎn)實踐中具有重要的現(xiàn)實意義。自發(fā)現(xiàn)泵可以反轉(zhuǎn)作液力透平使用以來,國內(nèi)外的研究學(xué)者做了大量這方面的研究,但是總體來說,以泵與液力透平之間性能換算系數(shù)方面的研究居多。這些研究的介質(zhì)大多都是清水,或者是將粘度較小的介質(zhì)當(dāng)作無粘流體處理。但是在石油化工等行業(yè)中,輸送的介質(zhì)大多都是粘度較大的介質(zhì),這無疑會對流體機械的性能產(chǎn)生較大的影響。因此,本文開展有關(guān)介質(zhì)粘度對透平性能的影響就很有必要。這也為今后更好地研究液力透平提供一定的依據(jù)。本文以5臺液力透平、5種不同粘度的介質(zhì)為研究對象,采用CFD方法進行數(shù)值模擬,以此來分析介質(zhì)粘度對液力透平性能的影響。本文主要的研究內(nèi)容與研究結(jié)果如下:1.液力透平外特性。通過粘性介質(zhì)下液力透平的水力效率、壓頭與流量關(guān)系曲線可發(fā)現(xiàn),隨介質(zhì)粘度的增大,液力透平的水力效率明顯下降,液力透平的壓頭則隨介質(zhì)粘度的增大下降不明顯。2.換算系數(shù)。將粘性介質(zhì)最優(yōu)效率點時透平的流量、壓頭與泵在清水介質(zhì)最優(yōu)工況時的流量、揚程作比即可得到兩者之間的換算系數(shù)。通過分析可發(fā)現(xiàn)隨著介質(zhì)粘度的增大,流量、揚程/壓頭換算系數(shù)均增大;而當(dāng)介質(zhì)粘度相同時,流量、揚程/壓頭換算系數(shù)隨比轉(zhuǎn)速的增大則大體呈下降趨勢。3.液力透平的內(nèi)流場。液力透平在蝸殼進口處的壓力最高,流體沿著蝸殼進口到葉輪出口的整個過程中,液力透平的靜壓值逐漸降低。另外當(dāng)液力透平在小流量工況下運行時,流道內(nèi)的速度較小,流動較為平穩(wěn),此時液力透平內(nèi)部只存在少量的渦。隨流量的增大,葉輪流道中渦的尺度增大,且渦的位置逐漸由葉片背面向葉片工作面轉(zhuǎn)移。
[Abstract]:Energy is the main driving force to promote social and economic development, but also a strong guarantee of sustainable development. At present, the main problem facing mankind is the contradiction between energy shortage and social and economic development, so the rational application of energy is an important problem. As a kind of energy recovery equipment, hydraulic turbine can extract kinetic energy from fluid medium, which has important practical significance in production practice. Since it was discovered that the pump can be used as a hydraulic turbine, researchers at home and abroad have done a lot of research in this field, but generally speaking, the research on the conversion coefficient between pump and hydraulic turbine is the most. Most of the media studied are clear water, or the medium with low viscosity is treated as non-viscous fluid. However, in the petrochemical industry, most of the transport media are viscosity medium, which will undoubtedly have a greater impact on the performance of fluid machinery. Therefore, it is necessary to study the effect of medium viscosity on turbine performance in this paper. This also provides a certain basis for better study of hydraulic turbine in the future. In this paper, five kinds of hydraulic turbine and five different viscosity media are taken as the research object. The CFD method is used to simulate the effect of the medium viscosity on the hydraulic turbine performance. The main contents and results of this paper are as follows: 1. External characteristics of hydraulic turbine. Through the hydraulic efficiency of hydraulic turbine in viscous medium, the relation curve between pressure head and flow rate can be found that the hydraulic efficiency of hydraulic turbine decreases obviously with the increase of medium viscosity, while the hydraulic head of hydraulic turbine does not decrease obviously with the increase of medium viscosity. Conversion factor. The conversion coefficient can be obtained by comparing the flow rate of turbine at the optimal efficiency point of viscous medium, the flow rate of pressure head and pump in the optimal working condition of clear water medium and the ratio of head to head. Through analysis, it can be found that with the increase of medium viscosity, the conversion coefficient of head / head increases with the increase of medium viscosity, but when the viscosity of medium is the same, the conversion coefficient of head / head decreases with the increase of specific speed. The internal flow field of a hydraulic turbine. The pressure of the hydraulic turbine is the highest at the inlet of the volute, and the hydrostatic pressure of the turbine decreases gradually during the whole process from the inlet of the volute to the outlet of the impeller. In addition, when the hydraulic turbine is running under the condition of small flow rate, the velocity in the runner is smaller and the flow is more stable. At this time, there are only a few vortices in the hydraulic turbine. With the increase of the flow rate, the scale of the vortex in the impeller passage increases, and the position of the vortex gradually shifts from the back of the blade to the blade face.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ051.21
【參考文獻】
相關(guān)期刊論文 前10條
1 王曉暉;楊軍虎;史鳳霞;;能量回收液力透平的研究現(xiàn)狀及展望[J];排灌機械工程學(xué)報;2014年09期
2 畢智高;楊軍虎;趙維元;;能量回收液力透平的研究現(xiàn)狀及展望[J];流體機械;2014年08期
3 李文廣;;粘度對離心泵作為水能回收液力透平使用的性能和流動影響的CFD研究[J];水泵技術(shù);2014年03期
4 楊軍虎;李海龍;龔朝暉;夏書強;羅凱凱;;離心泵反轉(zhuǎn)作液力透平的力學(xué)特性[J];排灌機械工程學(xué)報;2014年01期
5 楊軍虎;夏書強;;液力透平介質(zhì)含氣工況的數(shù)值分析[J];蘭州理工大學(xué)學(xué)報;2013年06期
6 管將;胡靜寧;徐燕;葉群;谷任歸;;葉輪葉片數(shù)對液力透平性能的影響[J];中國農(nóng)村水利水電;2013年11期
7 周榕;唐曉晨;王輝;戴露;馬駿;;離心泵作液力透平的數(shù)值模擬[J];化工機械;2013年05期
8 楊孫圣;李強;黃志攀;孔繁余;石海峽;;不同比轉(zhuǎn)數(shù)離心泵作透平研究[J];農(nóng)業(yè)機械學(xué)報;2013年03期
9 徐秀生;;液力透平在石化行業(yè)中的應(yīng)用[J];通用機械;2013年03期
10 楊孫圣;孔繁余;薛玲;胡俐;;長短葉片對液力透平性能的影響[J];農(nóng)業(yè)機械學(xué)報;2012年07期
相關(guān)博士學(xué)位論文 前2條
1 楊孫圣;離心泵作透平的理論分析數(shù)值計算與實驗研究[D];江蘇大學(xué);2012年
2 沈玉志;中國能源發(fā)展的決策模型研究[D];遼寧工程技術(shù)大學(xué);2004年
相關(guān)碩士學(xué)位論文 前3條
1 劉浩然;多級液力透平參數(shù)之間關(guān)系的研究[D];蘭州理工大學(xué);2014年
2 袁亞飛;基于離心泵的水力透平的流場分析及性能預(yù)測[D];蘭州理工大學(xué);2010年
3 彭林斌;能量回收向心透平設(shè)計及內(nèi)部流動分析[D];上海交通大學(xué);2010年
,本文編號:1871025
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1871025.html