大氣下單層石墨烯的熱穩(wěn)定性及納米摩擦特性研究
本文選題:化學(xué)氣相沉積 + 石墨烯; 參考:《江蘇大學(xué)》2015年碩士論文
【摘要】:石墨烯是僅有一個碳原子層厚度的新型二維材料,具六角型蜂窩狀晶格結(jié)構(gòu),由于其擁有諸如高電子遷移率、室溫下的量子霍爾效應(yīng)、高熱導(dǎo)率與透光率等優(yōu)異的物化性質(zhì)而聞名于世。國內(nèi)外研究者普遍認(rèn)為石墨烯可取代硅,成為新一代半導(dǎo)體器件的基礎(chǔ)材料,具有廣泛的研究和應(yīng)用價值。然而在石墨烯的應(yīng)用中,仍有許多理論問題亟待解決。如石墨烯的熱穩(wěn)定性研究對石墨烯基器件的設(shè)計及在實際應(yīng)用中的穩(wěn)定性要求,都有著重要的指導(dǎo)性意義。另外,由于石墨烯具有較高的比表面積,與其表面相關(guān)的一些作用力都顯著增強(qiáng),且對周圍環(huán)境極其敏感,所以研究不同環(huán)境下,石墨烯表面效應(yīng)對石墨烯基器件的制備和裝配都有極其重要的意義。本文將詳細(xì)介紹石墨烯的主要物化性質(zhì)、應(yīng)用、常用制備方法和微觀結(jié)構(gòu)表征手段,探討石墨烯的熱穩(wěn)定性與納米摩擦學(xué)特性的國內(nèi)外研究現(xiàn)狀。通過對比分析目前主要的石墨烯制備方法,采用化學(xué)氣相沉積(Chemical vapor deposition,CVD)法制備石墨烯樣品。利用光學(xué)顯微鏡、原子力顯微鏡(Atomic force microscopy,AFM)、激光共聚焦拉曼(Raman)及X射線光電子能譜(X-ray photoelectron spectroscopy,XPS)等對所制備的實驗樣品進(jìn)行表征,為后續(xù)實驗的開展奠定基礎(chǔ)。利用Raman、XPS、AFM,重點研究了CVD方法制備的單層石墨烯在空氣環(huán)境中的熱穩(wěn)定性。結(jié)果表明空氣環(huán)境中熱處理可以向石墨烯中引入缺陷,并使其晶粒發(fā)生細(xì)化;石墨烯表面出現(xiàn)類似于氧化石墨烯表面常見的C=O、C-OH化學(xué)鍵,表明空氣環(huán)境中熱處理后的石墨烯發(fā)生輕微的氧化作用;石墨烯在加熱與冷卻過程中,由于與襯底的熱膨脹系數(shù)失配引起其內(nèi)應(yīng)力的釋放,在一定程度上改善了石墨烯的表面形貌。另外,由于熱氧化后的石墨烯表面的化學(xué)活性有了一定程度的增加,使得其表面能增大。這些結(jié)果將對石墨烯基器件在高溫環(huán)境下工作的穩(wěn)定性研究提供一定的理論基礎(chǔ)。在石墨烯的熱穩(wěn)定性研究的基礎(chǔ)上,結(jié)合基于AFM的納米力學(xué)測試技術(shù),根據(jù)納米摩擦學(xué)理論以及接觸力學(xué)的最新研究成果,深入探討利用熱氧化法調(diào)控石墨烯表面納米摩擦學(xué)特性的基本原理及可行性。詳細(xì)介紹了AFM在納米摩擦學(xué)測試領(lǐng)域的原理及應(yīng)用,并對熱氧化前后的石墨烯樣品進(jìn)行納米摩擦學(xué)測試。文中深入分析了樣品表面粗糙度對測試結(jié)果的影響。實驗結(jié)果表明熱氧化的石墨烯表面的摩擦力明顯增加。利用針尖與樣品之間的接觸理論研究表明,熱氧化石墨烯降低的楊氏模量是其表面摩擦力顯著增加的主要原因。另外,熱氧化后的石墨烯表面呈現(xiàn)出類似于氧化石墨烯的親水性能,從而引起其表面粘附力的顯著增加。這些結(jié)果為石墨烯表面力學(xué)特性的調(diào)控提供了新思路,對石墨烯在微機(jī)械制造、裝配和納米潤滑等領(lǐng)域中的應(yīng)用提供了理論依據(jù)。
[Abstract]:Graphene is a new two-dimensional material with only one layer of carbon atom. It has hexagonal honeycomb lattice structure and quantum Hall effect at room temperature due to its high electron mobility. Excellent physical and chemical properties such as high thermal conductivity and light transmittance are well known around the world. Researchers at home and abroad generally think that graphene can replace silicon as the basic material of the new generation semiconductor devices, and has extensive research and application value. However, in the application of graphene, there are still many theoretical problems to be solved. For example, the study of the thermal stability of graphene has important guiding significance for the design of graphene based devices and the requirements of stability in practical applications. In addition, because graphene has a high specific surface area, some of the forces related to its surface are significantly enhanced, and extremely sensitive to the surrounding environment, so the study of different environments, The surface effect of graphene is very important for the fabrication and assembly of graphene based devices. In this paper, the main physicochemical properties, applications, preparation methods and microstructure characterization of graphene are introduced in detail, and the research status of thermal stability and nano-tribological properties of graphene at home and abroad are discussed. Graphene samples were prepared by chemical vapor deposition (CVD) method by comparing and analyzing the main methods of graphene preparation. The experimental samples were characterized by optical microscope, atomic force microscope (AFM), laser confocal Raman spectroscopy (Ram) and X-ray photoelectron spectroscopy (XPS), which laid a foundation for further experiments. The thermal stability of monolayer graphene prepared by CVD method in air environment was studied by means of Raman X PSN AFM. The results show that the defects can be introduced into graphene by heat treatment in air, and the grain size of graphene can be refined. The results show that the graphene after heat treatment in air has a slight oxidation and the internal stress is released due to the mismatch of thermal expansion coefficient with the substrate during the heating and cooling of graphene. The surface morphology of graphene was improved to some extent. In addition, the surface energy of graphene was increased due to the increase of the surface chemical activity of the thermally oxidized graphene. These results will provide a theoretical basis for the study of the stability of graphene based devices at high temperature. Based on the study of thermal stability of graphene, combined with the nano-mechanical testing technology based on AFM, according to the theory of nano-tribology and the latest research results of contact mechanics, The basic principle and feasibility of controlling nano-tribological properties of graphene surface by thermal oxidation were discussed. The principle and application of AFM in nano-tribological testing are introduced in detail. The nano-tribological tests of graphene samples before and after thermal oxidation are carried out. The influence of the surface roughness of the sample on the test results is analyzed in depth. The experimental results show that the friction on the surface of graphene is obviously increased. The theoretical study on the contact between the tip and the sample shows that the decrease of Young's modulus of graphene oxide is the main reason for the obvious increase of the surface friction. In addition, the surface of graphene after thermal oxidation exhibits hydrophilicity similar to that of graphene oxide, which leads to a significant increase in the surface adhesion of graphene. These results provide a new idea for the control of the surface mechanical properties of graphene and provide a theoretical basis for the application of graphene in the fields of micro-mechanical fabrication, assembly and nano-lubrication.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TQ127.11
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王峰;廉嘉麗;王康麗;程時杰;蔣凱;;新型炭材料在超級電容器與鉛炭電池中的應(yīng)用研究進(jìn)展[J];儲能科學(xué)與技術(shù);2014年06期
2 李允;王權(quán);;單層石墨烯在空氣中的熱穩(wěn)定性研究[J];電子元件與材料;2015年01期
3 原梅妮;向豐華;郎賢忠;弓巧娟;;石墨烯的制備方法與工藝研究進(jìn)展[J];兵器材料科學(xué)與工程;2015年01期
4 鄧子泠;熊小敏;;石墨層間化合物在壓強(qiáng)下的穩(wěn)定性[J];廣州化工;2015年09期
5 Jin-Wu Jiang;;Graphene versus MoS_2: A short review[J];Frontiers of Physics;2015年03期
6 劉蕊蕊;陳英杰;孫彬;周國偉;;TiO_2/石墨烯納米復(fù)合材料的合成及其光催化應(yīng)用研究進(jìn)展[J];化工新型材料;2014年10期
7 ZHANG CanKun;LIN WeiYi;ZHAO ZhiJuan;ZHUANG PingPing;ZHAN LinJie;ZHOU YingHui;CAI WeiWei;;CVD synthesis of nitrogen-doped graphene using urea[J];Science China(Physics,Mechanics & Astronomy);2015年10期
8 王黨朝;張玉明;;Spectroscopic and scanning probe analysis on large-area epitaxial graphene grown under pressure of 4 mbar on 4H-SiC(0001)substrates[J];Chinese Physics B;2014年07期
9 郭鈺;郭麗偉;蘆偉;黃郊;賈玉萍;孫偉;李治林;王逸非;;Influence of defects in SiC(0001) on epitaxial graphene[J];Chinese Physics B;2014年08期
10 武明義;孫強(qiáng);賈瑜;梁二軍;;二維石墨烯/h-BN異質(zhì)結(jié)構(gòu)負(fù)熱膨脹性質(zhì)的理論研究[J];中國材料進(jìn)展;2015年Z1期
相關(guān)博士學(xué)位論文 前10條
1 趙夢潔;碳納米管與石墨烯納米材料用于藥物電化學(xué)傳感研究[D];華中科技大學(xué);2013年
2 倪昀;基于二維碳材料的自旋電子學(xué)和熱自旋電子學(xué)器件的設(shè)計與研究[D];華中科技大學(xué);2013年
3 張葉臻;新型石墨紙和石墨烯在微生物燃料電池中的應(yīng)用研究[D];華南理工大學(xué);2013年
4 宋金萍;功能化石墨烯納米復(fù)合物的制備及性能研究[D];山西大學(xué);2013年
5 楊麗;FeCl_3-NiCl_2-GICs及其還原產(chǎn)物的制備與微波吸收性能研究[D];湖南大學(xué);2012年
6 Abbas Babapour;銀納米粒子有機(jī)/無機(jī)復(fù)合薄膜制備及其物理和生物特性[D];哈爾濱工業(yè)大學(xué);2012年
7 吳珂;納米結(jié)構(gòu)在石墨烯/Ru(0001)表面的組裝以及石墨烯納米結(jié)構(gòu)的生長研究[D];浙江大學(xué);2013年
8 王鴻;單晶石墨烯的化學(xué)氣相沉積法制備、氫氣刻蝕與同質(zhì)外延研究[D];中國科學(xué)技術(shù)大學(xué);2013年
9 陳牧;拓?fù)浣^緣體薄膜表面態(tài)和摻雜效應(yīng)的STM研究[D];清華大學(xué);2012年
10 韓文赫;基于多譜協(xié)同分析方法的D/INTP降低柴油機(jī)有害排放機(jī)理研究[D];江蘇大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 唐興江;CO_2加氫制甲醇用GNS促進(jìn)CuO-ZnO/Al_2O_3催化劑的研究[D];蘭州理工大學(xué);2013年
2 趙冬嬌;基于石墨烯的若干新型電化學(xué)傳感器的制備及應(yīng)用研究[D];浙江理工大學(xué);2013年
3 張儀軒;磁性石墨烯材料的制備及其環(huán)境應(yīng)用[D];華東師范大學(xué);2013年
4 鄧鵬飛;碳化硅外延石墨烯工藝探討及石墨烯微觀摩擦學(xué)性能研究[D];西安電子科技大學(xué);2013年
5 趙艷黎;SiC襯底石墨烯生長機(jī)理及電學(xué)特征[D];西安電子科技大學(xué);2013年
6 歐陽玉;水溶性聚合物修飾的石墨烯基抗菌復(fù)合物的制備及表征[D];暨南大學(xué);2013年
7 張旭;大面積石墨烯及其透明導(dǎo)電膜的制備與性能研究[D];蘭州交通大學(xué);2013年
8 方俊武;石墨烯復(fù)合化對TiO_2(B)儲鋰性能和Bi_2WO_6光催化活性的改善及機(jī)制[D];浙江工業(yè)大學(xué);2013年
9 楊志;石墨烯功能薄膜的制備及圖案化細(xì)胞培養(yǎng)體系的構(gòu)建[D];哈爾濱工業(yè)大學(xué);2012年
10 陳亞男;石墨烯負(fù)載鉑納米顆粒修飾電極的制備及應(yīng)用[D];內(nèi)蒙古工業(yè)大學(xué);2013年
,本文編號:1831378
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1831378.html