改性氧化石墨烯復(fù)合納濾膜的制備及性能研究
本文選題:氧化石墨烯 + 羧基化氧化石墨烯; 參考:《浙江工業(yè)大學(xué)》2017年碩士論文
【摘要】:氧化石墨烯(GO)表面分布著很多含氧官能團(tuán),這些基團(tuán)使氧化石墨烯具有良好的分散性、親水性、與聚合物的相容性等,還為進(jìn)一步改性提供了大量的活性位點(diǎn),其中羧基化氧化石墨烯(CFGO)因?yàn)楸砻娲罅眶然娜ベ|(zhì)子化而具有更好的水溶性,與聚合物的相容性也更好。本文以聚砜為底膜,哌嗪和均苯三甲酰氯為單體,以GO/CFGO作為水相添加劑,通過界面聚合(IP)法制備了聚酰胺復(fù)合納濾膜。在此基礎(chǔ)上,考察了復(fù)合膜的滲透性能,并初步探究了其在染料脫鹽濃縮和抗污染中的應(yīng)用。首先用Hummers法制備了GO,再利用氫溴酸和草酸先后對其進(jìn)行處理得到CFGO。利用傅立葉變換紅外光譜(FTIR)、X射線光電子能譜(XPS)、透射電子顯微鏡(TEM)對兩者的化學(xué)結(jié)構(gòu)及形貌進(jìn)行表征,用接觸角考察了兩者的親水性,并用紫外吸收光譜和動(dòng)態(tài)光散射對分散性能進(jìn)行表征。繼而將不同量的GO/CFGO添加到水相溶液中制備得到GO/CFGO復(fù)合納濾膜。采用掃面電鏡(SEM)和原子力顯微鏡(AFM)對膜的表面微觀形貌進(jìn)行表征,傅立葉變換紅外光譜(FTIR)、X射線光電子能譜(XPS)對復(fù)合納濾膜的化學(xué)結(jié)構(gòu)進(jìn)行了表征,用接觸角測試膜表面親水性及用Zeta電位儀測量材料的表面電荷。結(jié)果表明,CFGO在膜中具有更好的分散性能,并使膜的親水性更好。在膜的滲透性能實(shí)驗(yàn)中,隨著GO/CFGO添加量的提高,復(fù)合納濾膜的純水通量先升高,當(dāng)GO為0.05%和CFGO烯濃度為0.07%時(shí),GO/PA膜和CFGO/PA膜的純水通量達(dá)到最大值,隨后開始下降。實(shí)驗(yàn)還研究了復(fù)合膜在染料脫鹽中的應(yīng)用,當(dāng)CFGO的添加量為0.07%時(shí),復(fù)合膜的通量達(dá)到110.4 L*m-2*h-1,這與復(fù)合膜的純水通量比較接近,顯示出CFGO/PA膜在染料脫鹽濃縮中廣闊的應(yīng)用前景。最后,探究了復(fù)合納濾膜的抗污染性能。CFGO更能大大提高復(fù)合膜的親水性,降低膜表面粗糙度以及使膜表面帶有更多的負(fù)電荷,因此CFGO改性后的復(fù)合膜的抗污染性能更好。
[Abstract]:Many oxygen-containing functional groups are distributed on the surface of graphene oxide (GOO). These groups make graphene oxide have good dispersion, hydrophilicity, compatibility with polymers, and provide a large number of active sites for further modification. Carboxylated graphene oxide (CFG) has better water solubility and better compatibility with polymers due to the deprotonation of a large number of carboxyl groups on the surface. Polyamide composite nanofiltration membranes were prepared by interfacial polymerization with polysulfone as substrate, piperazine and trimethoyl chloride as monomers and GO/CFGO as water phase additive. On this basis, the permeability of the composite membrane was investigated, and its application in dye desalination concentration and pollution resistance was preliminarily explored. First, GO3 was prepared by Hummers method, and then treated with hydrobromic acid and oxalic acid to obtain CFGO. Their chemical structure and morphology were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), and their hydrophilicity was investigated by contact angle. The dispersion properties were characterized by UV absorption spectrum and dynamic light scattering. Then the GO/CFGO composite nanofiltration membrane was prepared by adding different amounts of GO/CFGO into aqueous solution. The surface morphology of the composite nanofiltration membrane was characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The chemical structure of the composite nanofiltration membrane was characterized by FTIR FTIR and X-ray photoelectron spectroscopy (XPS). The surface hydrophilicity of the film was measured by contact angle and the surface charge of the material was measured by Zeta potentiometer. The results show that CFGO has better dispersibility and better hydrophilicity in the membrane. In the experiment of membrane permeability, the pure water flux of composite nanofiltration membrane first increased with the increase of GO/CFGO addition. When go was 0.05% and CFGO ene concentration was 0.07, the pure water flux of GO-PA membrane and CFGO/PA membrane reached the maximum value, and then decreased. The application of composite membrane in dye desalination was also studied. When the amount of CFGO added was 0.07, the flux of composite membrane reached 110.4 L ~ (-1) m ~ (-2) h ~ (-1), which was close to the pure water flux of composite membrane. It showed that CFGO/PA membrane had a broad application prospect in dye desalination and concentration. Finally, the anti-fouling performance of the composite nanofiltration membrane. CFGO can greatly improve the hydrophilicity of the composite membrane, reduce the surface roughness and make the membrane surface with more negative charge, so the anti-fouling performance of the composite membrane modified by CFGO is better.
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ051.893
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 顧皓;周寧琳;樊云婷;王曉丹;李文秀;沈健;;羧基化氧化石墨烯-谷氨酸復(fù)合物的抗凝血性能[J];高等學(xué);瘜W(xué)學(xué)報(bào);2013年02期
2 劉海露;王斌;鄭景新;黃健恒;李良;廖兵;;納濾膜的研究進(jìn)展[J];廣州化學(xué);2012年02期
3 馬馮;張玉忠;丁曉莉;林立剛;李泓;;磺化聚砜/聚醚砜共混非對稱納濾膜的制備與性能表征[J];膜科學(xué)與技術(shù);2012年01期
4 徐東;周寧琳;沈健;;羧基化氧化石墨烯的血液相容性[J];高等學(xué)校化學(xué)學(xué)報(bào);2010年12期
5 ;Molecular dynamics simulation study on zwitterionic structure to maintain the natural behavior of polyalanine13 in aqueous environment[J];Science in China(Series B:Chemistry);2008年01期
6 董婷婷;陳國華;陳容;高從X&;;甲殼素黃原酸酯/聚丙烯腈復(fù)合納濾膜的研究[J];功能材料;2006年11期
7 傅玲;劉洪波;鄒艷紅;李波;;Hummers法制備氧化石墨時(shí)影響氧化程度的工藝因素研究[J];炭素;2005年04期
8 冉艷紅,陳萬群;納濾膜濃縮中草藥提取液研究[J];廣州化工;2005年03期
9 翟曉東,陸曉峰,梁國明,張儀,許振良,王彬芳;界面縮聚法制備聚酰胺復(fù)合納濾膜——I.復(fù)合納濾膜的制備及其結(jié)構(gòu)[J];華東理工大學(xué)學(xué)報(bào);2001年06期
10 劉淑秀,姚仕仲,鄭大威,李佩珩,高以煊;納濾膜及其表面活性劑分離特性的研究[J];膜科學(xué)與技術(shù);1997年02期
相關(guān)博士學(xué)位論文 前2條
1 胡登;基于納米材料和含氟單體納濾膜制備及其應(yīng)用研究[D];華東理工大學(xué);2013年
2 李琰;氧化石墨烯的合成、表征及其對U(Ⅵ)、Th(Ⅳ)、Eu(Ⅲ)的吸附研究[D];蘭州大學(xué);2012年
相關(guān)碩士學(xué)位論文 前2條
1 余宏偉;MIL-53 (Al)/ 芳香聚酰胺雜化納濾膜的制備與性能研究[D];浙江工業(yè)大學(xué);2015年
2 劉艷;超級(jí)電容器用石墨烯/聚合物復(fù)合材料的制備及其性能[D];中南大學(xué);2012年
,本文編號(hào):1823380
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1823380.html