300KA大型預(yù)焙鋁電解槽電熱場的計算分析
發(fā)布時間:2018-04-28 01:18
本文選題:鋁電解槽 + 電熱場; 參考:《北方工業(yè)大學》2016年碩士論文
【摘要】:在現(xiàn)代鋁生產(chǎn)過程中,生產(chǎn)鋁的主要設(shè)備——鋁電解槽,其中存在著多種物理場,包括電場、熱場、磁場、應(yīng)力場、流場等。在這些物理場中每一個物理場都不是相互獨立的,而是相互影響的,每一種物理場都會對其他的幾種物理場產(chǎn)生或大或小的影響,關(guān)系非常復(fù)雜。在這些物理場中,電場和熱場是其他物理場的基礎(chǔ),所以電熱場的某些參數(shù)值會對鋁生產(chǎn)帶來一定的影響,具體的影響主要包括水平電流的大小、槽體電熱平衡、槽膛伸腿長度、鋁液界面平穩(wěn)度,進而就會影響電流的效率、能耗多少、槽體部分結(jié)構(gòu)的壽命等經(jīng)濟技術(shù)指標。在電熱場的研究中,直接對某些參數(shù)進行測量難度大、工作量也大,而且只能測量槽體某些關(guān)鍵部位。本課題采用數(shù)值仿真的方法對鋁電解槽的電熱場進行了計算機仿真,從而達到優(yōu)化生產(chǎn)指標的目的。本課題利用有限元分析軟件COMSOL Multiphysics,根據(jù)某設(shè)計院鋁電解槽的設(shè)計圖紙以及它的結(jié)構(gòu)和物理參數(shù)建立了鋁電解槽的電熱場數(shù)學物理模型。而且在計算仿真時,本課題會按照槽體長軸和短軸將槽體切開,取整個槽體的四分之一進行計算仿真。在將鋁電解槽的電熱場看做穩(wěn)態(tài)場的前提下,對電熱場進行數(shù)學計算時,耦合計算導電的拉普拉斯方程和有內(nèi)熱源的導熱泊松方程。本課題首先仿真計算了穩(wěn)定生產(chǎn)情況下鋁電解槽的電壓分布和溫度分布,并分析討論其分布的合理性。然后計算了改變陽極保溫材料的厚度和鋁電解槽換極工藝兩種情況下,電解槽溫度場的變化情況。當陽極保溫材料厚度由160mm降為40mm時,計算出電解槽最高溫度基本保持不變,最低溫度從128℃下降到79℃;本文還計算了更換陽極時新陽極的溫度對鋁電解槽的影響,計算結(jié)果表明新加入的陽極的溫度越高,槽體最低溫度越高,新陽極周圍的溫度也會隨著升高。本課題瞬態(tài)計算了更換的新陽極的溫度變化情況,計算結(jié)果表明通過熱傳遞的方式陽極被慢慢加熱。通過這些計算能夠為鋁生產(chǎn)提供指導。
[Abstract]:In the process of modern aluminum production, there are many kinds of physical fields, including electric field, thermal field, magnetic field, stress field, flow field and so on. In these physical fields, each physical field is not independent of each other, but interacts with each other. Each physical field will have a large or small effect on other physical fields, and the relationship is very complex. In these physical fields, the electric field and the thermal field are the basis of other physical fields, so some parameters of the electrothermal field will have a certain impact on aluminum production. The specific effects include the magnitude of horizontal current, the electrothermal balance of the tank, The length of the leg and the stability of the liquid aluminum interface will affect the efficiency of the current, the amount of energy consumption, the lifetime of the tank structure and other economic and technical indicators. In the study of electrothermal field, it is difficult to measure some parameters directly, and the workload is also large, and only some key parts of the tank body can be measured. In this paper, the method of numerical simulation is used to simulate the electrothermal field of aluminum reduction cell, so as to optimize the production index. Using finite element analysis software COMSOL Multiphysics, the mathematical and physical model of electrothermal field of aluminum electrolysis cell is established according to the design drawings, structure and physical parameters of aluminum reduction cell in a design institute. Moreover, in the course of calculation and simulation, the slot body will be cut by the long axis and the short axis, and 1/4 of the whole tank body will be taken for calculation and simulation. On the premise that the electrothermal field of the aluminum reduction cell is regarded as the steady state field, the Laplace equation and the Poisson equation with internal heat source are coupled to calculate the electrothermal field. In this paper, the voltage distribution and temperature distribution of aluminum reduction cell under the condition of stable production are calculated by simulation, and the rationality of the distribution is analyzed and discussed. Then the temperature field of the electrolytic cell is calculated under the condition of changing the thickness of the anode insulation material and the electrode changing process of the aluminum reduction cell. When the thickness of anode insulation material is reduced from 160mm to 40mm, the maximum temperature of the electrolytic cell remains basically unchanged, and the minimum temperature decreases from 128 鈩,
本文編號:1813153
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1813153.html
最近更新
教材專著