能源草光合生物制氫工藝優(yōu)化實驗研究
本文選題:能源草 + 光合細菌 ; 參考:《河南農(nóng)業(yè)大學(xué)》2015年碩士論文
【摘要】:隨著化石能源的枯竭和生態(tài)環(huán)境的惡化,尋求可替代化石能源的清潔可再生能源成為人們研究的熱點。能源草的能源化利用是近年來生物質(zhì)能源領(lǐng)域的研究熱點。本文選用王草、象草、柳枝稷、紫花苜蓿這四種常見的能源草為原料,分別對其光合生物制氫特性進行了實驗研究。首先將能源草原料利用纖維素酶酶解預(yù)處理,并利用其纖維素酶酶解液作為產(chǎn)氫底物,以四種能源草酶酶解的累積產(chǎn)氫量和產(chǎn)氫速率為考察指標(biāo),對比了不同類型能源草的產(chǎn)氫能力,并利用修正的Gompertz方程對產(chǎn)氫過程進行回歸分析,驗證了能源草作為光合制氫原料的技術(shù)可行性。利用其中產(chǎn)氫效果較好的紫花苜蓿為底物,以對產(chǎn)氫影響較為顯著的溫度、光照強度、以及初始p H三種因素設(shè)計了三因素三水平正交實驗組,對實驗結(jié)果進行直觀分析與方差分析,以獲取最佳產(chǎn)氫工藝條件。實驗結(jié)果表明,(1)通過對王草、象草、柳枝稷和紫花苜蓿等四種能源草的主要成分的測定,王草、象草、柳枝稷和紫花苜蓿的纖維素+半纖維素含量分別為56.19%、54.14%、61.11%和57.13%,這4種能源草的主要成分與常用的光合產(chǎn)氫原料如小麥、玉米、水稻等農(nóng)作物秸稈的主要成分相差不大,說明這4種能源草均具有較好的能源轉(zhuǎn)化的物質(zhì)基礎(chǔ)。(2)在底物濃度為10g/L,酶負(fù)荷為100mg/g能源草,酶解溫度為50°C,酶解時間48h時,王草的還原糖濃度為5.14mg/m L,象草為4.04mg/m L,柳枝稷為2.27mg/m L,紫花苜蓿為5.34mg/m L?梢娡醪莺妥匣ㄜ俎_@兩種能源草經(jīng)過纖維素酶處理過后的還原糖產(chǎn)量比其他兩種的要高一些,其中紫花苜蓿的略高,但是跟王草的相差不大,而象草的還原糖產(chǎn)量比這兩種稍低,柳枝稷的還原糖產(chǎn)量最低。(3)當(dāng)產(chǎn)氫工藝條件為光合細菌接種量30%、溫度30°C、光照度2000lux、發(fā)酵時間120h時,紫花苜蓿產(chǎn)氫性能最好,王草次之,而象草和柳枝稷的產(chǎn)氫性能較差。王草、象草、柳枝稷和紫花苜蓿的累積產(chǎn)氫量分別為75.3m L、27.2m L、26.1m L、81.6m L,最大產(chǎn)氫速率分別為7.8m L/(h·L),3.5m L/(h·L),4.3m L/(h·L),14.75m L/(h·L)。(4)在所選水平范圍內(nèi),各因素對能源草產(chǎn)氫的影響主次順序為溫度→光照強度→初始p H值,由方差分析可知,溫度和光照強度對能源草光合產(chǎn)氫性能影響為顯著,初始p H值為不顯著,由各因素水平值的均值可見,能源草光合生物制氫的最佳工藝水平為30°C,p H=7,光照強度為3000lx。(5)利用王草、紫花苜蓿等能源草為原料來進行光合制氫是可行的,將能源草這種綠色生物質(zhì)資源同光合生物制氫技術(shù)結(jié)合起來,既能改善生態(tài)環(huán)境,又能產(chǎn)生清潔的氫能源,具有顯著的社會、環(huán)境和經(jīng)濟效益。
[Abstract]:With the depletion of fossil energy and the deterioration of ecological environment, the search for clean and renewable energy as a substitute for fossil energy has become a hot topic. In recent years, the energy utilization of energy grass is a hot topic in the field of biomass energy. In this paper, four common energy grasses, Wang grass, elephant grass, switchgrass and alfalfa, were used as raw materials to study the hydrogen production characteristics of photosynthetic organisms. At first, the raw material of energy grass was pretreated by cellulase enzymatic hydrolysis, and its cellulase hydrolysate was used as the substrate of hydrogen production. The cumulative hydrogen production and hydrogen production rate of four kinds of energy grass enzymatic hydrolysis were used as the index of investigation. The hydrogen production capacity of different types of energy grass was compared, and the regression analysis of hydrogen production process was carried out by using the modified Gompertz equation. The technical feasibility of energy grass as a raw material for hydrogen production was verified. Using alfalfa with better hydrogen production effect as substrate, three factors and three levels orthogonal experimental group were designed, which had significant effect on hydrogen production, such as temperature, light intensity and initial pH. Visual analysis and variance analysis of the experimental results were carried out to obtain the best conditions for hydrogen production. The results showed that the main components of four kinds of energy grass, Wang grass, elephant grass, switchgrass and alfalfa, were determined. The contents of cellulose hemicellulose in switchgrass and alfalfa were 56.19% and 54.14%, respectively. The main components of the four energy grasses were similar to those of common photosynthetic hydrogen production materials such as wheat, corn, rice and so on. The results showed that all of them had a good material basis for energy conversion. When the substrate concentration was 10 g / L, the enzyme loading was 100mg/g energy grass, the enzymatic hydrolysis temperature was 50 擄C, and the enzymatic hydrolysis time was 48 h. The concentration of reducing sugar was 5.14mg/m L, 4.04mg/m L, 2.27mg/m L and 5.34mg/m L. It can be seen that the yield of reducing sugar of royal grass and alfalfa after cellulase treatment is higher than that of the other two kinds. The alfalfa yield is slightly higher, but it is not different from that of royal grass. The yield of reducing sugar of elephant grass is lower than that of these two kinds, and the yield of reducing sugar of switchgrass is the lowest.) when the technological conditions of hydrogen production are inoculation amount of photosynthetic bacteria 30 擄C, temperature 30 擄C, luminance 2000c, fermentation time 120 h, the hydrogen production performance of alfalfa is the best, followed by Wang Cao. The hydrogen production of elephant grass and switchgrass was poor. The cumulative hydrogen production of Wang grass, elephant grass, switchgrass and alfalfa were 75.3m L ~ (27.2) L ~ (27. 2) L ~ (-1) ~ 26.1m L ~ (-1) and 81.6 m / L, respectively, and the maximum hydrogen production rate was 7.8m L / m / L ~ (-1) / h ~ 3.5m L ~ (-1) / L ~ + 4.3m L ~ (-1) L / L ~ (14.75 m / L ~ (-1) 路L ~ (-1))). The primary and secondary order of the effects of various factors on hydrogen production of energy grass was the initial pH value of light intensity and temperature. According to the analysis of variance, the effect of temperature and light intensity on photosynthetic hydrogen production of energy grass was significant, but the initial pH value was not significant. It can be seen from the mean value of each factor level that the optimum technology level of photosynthetic biological hydrogen production of energy grass is 30 擄CpH7 and the light intensity is 3000lx.f.5) it is feasible to use the energy grass such as royal grass and alfalfa as raw materials to produce hydrogen by photosynthesis. The combination of green biomass resources such as energy grass and photosynthetic biological hydrogen production technology can not only improve the ecological environment but also produce clean hydrogen energy. It has remarkable social, environmental and economic benefits.
【學(xué)位授予單位】:河南農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:S216;TQ116.2
【相似文獻】
相關(guān)期刊論文 前7條
1 王維通,施定基,王起華,方曉霞;研究光合生物氫代謝的高靈敏度氣相色譜法[J];太陽能學(xué)報;1983年04期
2 周雪花;申翔偉;李剛;荊艷艷;張全國;;太陽能光合生物連續(xù)制氫系統(tǒng)的能量平衡研究[J];安全與環(huán)境學(xué)報;2009年06期
3 杜金宇;王毅;周雪花;張全國;;基于太陽能溫度補償?shù)墓夂仙镏茪浞磻?yīng)器自控系統(tǒng)的設(shè)計[J];河南農(nóng)業(yè)大學(xué)學(xué)報;2012年05期
4 徐斐;何定兵;胥義;;綠藻光合生物制氫技術(shù)進展[J];工業(yè)微生物;2007年04期
5 馮先榮;螺旋藻——人類未來的營養(yǎng)保健源[J];飲食與健康;1994年05期
6 立梅;;海源蔬菜螺旋藻世紀(jì)的“王牌食品”[J];食品與健康;1999年05期
7 ;[J];;年期
相關(guān)會議論文 前4條
1 邱大俊;黃良民;張建林;宋星宇;張俊彬;譚燁輝;尹建強;劉勝;;珠江口微微型光合生物分布的初步研究[A];中國海洋湖沼學(xué)會第九次全國會員代表大會暨學(xué)術(shù)研討會論文摘要匯編[C];2007年
2 周汝雁;張全國;;環(huán)流罐式光合生物反應(yīng)器連續(xù)產(chǎn)氫研究[A];第七屆全國氫能學(xué)術(shù)會議論文集[C];2006年
3 邱大俊;黃良民;張建林;宋星宇;張俊彬;譚燁輝;尹建強;劉勝;;珠江口微微型光合生物的分布特點[A];中國海洋湖沼學(xué)會第九次全國會員代表大會暨學(xué)術(shù)研討會論文摘要匯編[C];2007年
4 候萬發(fā);;光合生物有機肥在有機茄子上的應(yīng)用效果[A];中國地壤學(xué)會第十次全國會員代表大會暨第五屆海峽兩岸土壤肥料學(xué)術(shù)交流研討會文集(面向農(nóng)業(yè)與環(huán)境的土壤科學(xué)專題篇)[C];2004年
相關(guān)重要報紙文章 前3條
1 本報記者 趙勇進;探究外向型農(nóng)業(yè)技術(shù)壁壘突破路徑[N];南通日報;2008年
2 王建高 本報特約記者 鄭曉偉;黃海的波濤為他吟唱[N];科技日報;2005年
3 劉霞;首次觀察到光合作用中能量轉(zhuǎn)化的量子機制[N];科技日報;2013年
相關(guān)博士學(xué)位論文 前2條
1 杜金宇;太陽能光合生物連續(xù)產(chǎn)氫自控系統(tǒng)與裝置研究[D];河南農(nóng)業(yè)大學(xué);2013年
2 周汝雁;環(huán)流罐式光合生物制氫反應(yīng)器及其能量傳輸過程研究[D];河南農(nóng)業(yè)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前3條
1 曾凡;太陽能光合生物連續(xù)制氫系統(tǒng)的火用分析研究[D];河南農(nóng)業(yè)大學(xué);2011年
2 李德峰;光合生物連續(xù)制氫裝置的太陽能供光系統(tǒng)實驗研究[D];河南農(nóng)業(yè)大學(xué);2010年
3 張丙學(xué);能源草光合生物制氫工藝優(yōu)化實驗研究[D];河南農(nóng)業(yè)大學(xué);2015年
,本文編號:1777551
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1777551.html