鋁礬土和鋯英石合成ZrN-SiAlON及其在含碳耐火材料中的應(yīng)用研究
本文選題:鋁礬土 切入點(diǎn):鋯英石 出處:《中國地質(zhì)大學(xué)(北京)》2017年碩士論文
【摘要】:針對(duì)開發(fā)利用中低品位鋁礬土等耐火資源和新型低碳非氧化物復(fù)相耐火材料的性能優(yōu)化等問題,本文利用中低品位鋁礬土和鋯英石制備ZrN-SiAlON等復(fù)相耐火粉體,并以蔗糖為結(jié)合劑,結(jié)合SiC粉體,制備含碳耐火材料,研究其力學(xué)性能、抗氧化性能和抗渣侵性能,取得一些重要研究成果。分析中低品位鋁礬土和鋯英石通過碳熱/鋁熱還原氮化法合成ZrN-SiAlON耐火原料的物相行為,獲得優(yōu)化的工藝參數(shù)。采用焦炭作為還原劑時(shí),中低品位鋁礬土和鋯英石在1600°C合成較純的ZrN-SiAlON物相。以ZrN-SiAlON耐火粉體為基質(zhì),以蔗糖溶液為結(jié)合劑,結(jié)合SiC粉體制備ZrN-SiAlON-SiC-C復(fù)相非氧化物耐火材料。經(jīng)1500°C熱處理后,ZrN-SiAlON耐火粉體受到蔗糖熱分解的影響,物相變化生成ZrO2、剛玉和石英,導(dǎo)致體積發(fā)生膨脹,顯氣孔率變大,體積密度減少,當(dāng)ZrN-SiAlON耐火粉體添加量為40wt.%時(shí),其顯氣孔率達(dá)到最大,體積密度達(dá)到最低,常溫抗折強(qiáng)度達(dá)到最大,分別為53.23%,1.36g/cm3,4.39MPa,但ZrO2、剛玉和石英的含量升高,有助于提高ZrN-SiAlON-SiC-C復(fù)相耐火材料的抗折強(qiáng)度。通過研究ZrN-SiAlON-SiC-C復(fù)相耐火材料的氧化行為變化,結(jié)果表明該材料在氧化過程中質(zhì)量變化主要受到不定形碳和SiC粉體的氧化。另外,當(dāng)氧化溫度為1200°C時(shí)ZrO2和方石英反應(yīng)生成鋯英石,當(dāng)氧化溫度為1400°C時(shí),剛玉和方石英生成莫來石。通過研究氣氛環(huán)境對(duì)ZrN-SiAlON-SiC-C復(fù)相耐火材料抗渣侵性能的影響,結(jié)果表明,在氧氣氛圍,該耐火材料氧化嚴(yán)重,造成孔隙變大,渣侵蝕嚴(yán)重。在氬氣氛圍,高爐渣滲透到耐火材料中,并溶解耐火材料,然后不斷滲透,填充耐火材料孔隙,形成致密層。在還原氛圍,高爐渣對(duì)耐火材料的潤濕角變大,沒有發(fā)生侵蝕現(xiàn)象。
[Abstract]:Aiming at the problems of developing and utilizing refractory resources such as medium and low grade bauxite and new low carbon non-oxide composite refractories, this paper prepared ZrN-SiAlON and other multiphase refractory powders with sucrose as binder, using medium and low grade bauxite and zircon as binder.Carbon-containing refractories were prepared with SiC powder, and their mechanical properties, oxidation resistance and slag erosion resistance were studied, and some important research results were obtained.The phase behavior of medium-low grade bauxite and zircon in the synthesis of ZrN-SiAlON refractory by carbothermal / aluminothermic reduction nitridation was analyzed and the optimized process parameters were obtained.When coke is used as reducing agent, relatively pure ZrN-SiAlON phase is synthesized from bauxite and zircon at 1600 擄C.Using ZrN-SiAlON refractory powder as matrix, sucrose solution as binder and SiC powder as binder, ZrN-SiAlON-SiC-C multiphase non-oxide refractories were prepared.After heat treatment of 1500 擄C, ZrN-SiAlON refractory powder was affected by the decomposition of sucrose, resulting in the formation of ZrO _ 2, corundum and quartz, resulting in volume expansion, increasing apparent porosity and decreasing volume density. When the amount of ZrN-SiAlON refractory powder was 40 wt.wt%,The apparent porosity, bulk density and flexural strength of ZrN-SiAlON-SiC-C multiphase refractories were 53.23, 1.36 g / cm ~ 3 and 4.39 MPa, respectively, but the contents of ZrO _ 2, corundum and quartz were increased, which was helpful to improve the flexural strength of ZrN-SiAlON-SiC-C multiphase refractories.The oxidation behavior of ZrN-SiAlON-SiC-C multiphase refractories is studied. The results show that the mass changes of ZrN-SiAlON-SiC-C composites are mainly oxidized by amorphous carbon and SiC powders during the oxidation process.In addition, when the oxidation temperature is 1200 擄C, ZrO2 reacts with cristobalite to form zircon, and when the oxidation temperature is 1400 擄C, corundum and cristobalite form mullite.The effect of atmosphere on slag erosion resistance of ZrN-SiAlON-SiC-C multiphase refractories was studied. The results showed that in oxygen atmosphere, the refractory was oxidized seriously, resulting in larger porosity and serious slag erosion.In argon atmosphere, blast furnace slag infiltrates into refractories, dissolves them, and then penetrates continuously, filling the pores of refractories to form dense layers.In reducing atmosphere, the wetting angle of blast furnace slag to refractory becomes larger, and no erosion occurs.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ175.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃衛(wèi)國;鋯英石的供需形勢[J];耐火材料;2002年03期
2 王中和;;鐵—鋯英石粉紅色的形成動(dòng)力學(xué)[J];陶瓷;1981年02期
3 張湛;鋯英石的特性[J];特種鑄造及有色合金;1988年05期
4 真;;國內(nèi)鋯英石需求看好[J];礦產(chǎn)保護(hù)與利用;1993年03期
5 孟貞杰;海南省鋯英石資源概況及利用前景[J];海南礦冶;1995年04期
6 陳遠(yuǎn)望;鋯英石供不應(yīng)求 價(jià)格上揚(yáng)[J];世界有色金屬;2005年01期
7 康厚軍;王曉麗;盧喜瑞;張東;崔春龍;唐敬友;;鋯英石微粉高溫固相合成研究[J];成都理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期
8 Н.T.Дира.И.Г.орлова;何如;;鋯英石陶瓷[J];玻璃纖維;1980年06期
9 董高翔;鋯英石單礦物的X射線熒光光譜分析[J];光譜學(xué)與光譜分析;1985年06期
10 盧崇信;;鋯英石性能的研究[J];硅酸鹽通報(bào);1986年03期
相關(guān)會(huì)議論文 前5條
1 崔春龍;張東;盧喜瑞;唐敬友;康厚軍;王曉麗;周玉林;易發(fā)成;;念青唐古拉鋯英石的結(jié)構(gòu)演變及抗γ射線輻照能力研究[A];第三屆廢物地下處置學(xué)術(shù)研討會(huì)論文集[C];2010年
2 施鷹;黃校先;;鋯英石陶瓷的熱壓制備與力學(xué)性能[A];94'全國結(jié)構(gòu)陶瓷、功能陶瓷、金屬/陶瓷封接學(xué)術(shù)會(huì)議論文集[C];1994年
3 施鷹;阮美玲;黃校先;;鋯英石粉末合成過程中的TEM研究[A];94'全國結(jié)構(gòu)陶瓷、功能陶瓷、金屬/陶瓷封接學(xué)術(shù)會(huì)議論文集[C];1994年
4 尹麗;黃朝暉;徐友果;房明浩;劉艷改;;石英添加量對(duì)鋯英石碳熱還原氮化物相行為的影響[A];第十七屆全國高技術(shù)陶瓷學(xué)術(shù)年會(huì)摘要集[C];2012年
5 王文焱;王愛華;謝敬佩;;鋯英石表面YAG激光滲入納米AlN的組織結(jié)構(gòu)[A];2005年全國電子顯微學(xué)會(huì)議論文集[C];2005年
相關(guān)重要報(bào)紙文章 前1條
1 熊炳昆;鋯和鉿——神奇的“稀有”孿生姊妹[N];中國有色金屬報(bào);2005年
相關(guān)碩士學(xué)位論文 前3條
1 李金鵬;石英和鋯英石復(fù)合鎂鈣系材料的制備及性能研究[D];鄭州大學(xué);2015年
2 盧喜瑞;放射性核素的鋯英石固化抗γ射線輻照能力研究[D];西南科技大學(xué);2009年
3 王福;鋯英石對(duì)A_2O_3-SiC-C搗打料性能的影響[D];河北理工學(xué)院;2004年
,本文編號(hào):1713296
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1713296.html