功能化碳納米管電解水析氫催化劑
本文選題:離子液體 切入點:碳納米管 出處:《西南大學(xué)》2017年碩士論文
【摘要】:氫氣是一種潔凈友好的二次能源,具有來源廣泛,產(chǎn)物為水,清潔環(huán)保,可以循環(huán)使用等優(yōu)點。電解水制氫是一種高效的制氫方式,電解水制氫的核心技術(shù)為陰極析氫催化劑。現(xiàn)有的析氫催化劑有Pt等貴金屬催化劑,Ni、Co等非貴金屬催化劑,過渡金屬磷化物催化劑,C60(OH)8和C3N4非金屬催化劑等。貴金屬Pt具有良好的電催化性能,但是它在地球上儲量有限,價格昂貴,限制了其大規(guī)模使用的可能性。Ni和Co等非貴金屬催化劑的催化性能相比較于貴金屬有一定差距,在酸性條件下它會被腐蝕和鈍化。過渡金屬磷化物催化劑具有良好的電催化性能,如MoP,WP,CoP。但以往合成磷化物電催化劑的過程中,合成工藝復(fù)雜,并伴有有機廢物的產(chǎn)生。近期的研究中,非金屬C60(OH)8和C3N4被研制出來,這類催化劑顯示出良好的電催化活性。但是這類電催化劑的合成路徑復(fù)雜,且合成費用昂貴。因此,現(xiàn)在急需研究制備出性能良好的電解水析氫催化劑。基于以上研究背景,本論文主要進行了以下三方面的研究:制備1-氨丙基-3-甲基咪唑溴鹽功能化碳納米管復(fù)合物(AMIM-Br-CNTs)、磷化鐵-碳納米管復(fù)合物(FeP-CNTs)和乙二胺-碳納米管復(fù)合物(EDA-CNTs)。在本論文的研究中,主要采用FT-IR、XPS、XRD和TGA等物性評價方法對所制得的析氫電催化劑進行表征。其在酸性條件下的析氫電化學(xué)行為進行系統(tǒng)的評價,并揭示其具體析氫機理,本論文的創(chuàng)新工作具體如下:(1)本論文制備出離子液體1-氨丙基-3-甲基咪唑溴鹽,并對多壁碳納米管進行酸化處理。在脫水劑DCC的作用下,將離子液體連接在多壁碳納米管上,制備出1-氨丙基-3-甲基咪唑-溴鹽碳納米管復(fù)合物(AMIM-Br-MWCNTs),電化學(xué)測試結(jié)果顯示,該催化劑的電化學(xué)析氫起峰電位是-350 mV,Tafel斜率為125.62 mV/dec。經(jīng)過XPS和FT-IR研究發(fā)現(xiàn),1-氨丙基-3-甲基咪唑溴鹽在與酸化碳納米管連接以后形成的酰胺基團擁有較強的質(zhì)子吸附能力,多壁碳納米管能夠傳遞電子,促進質(zhì)子的還原,使得催化劑擁有較好的電催化能力。(2)本論文制備出離子液體N,N-4-甲酯基-苯基-N-甲基葡萄糖溴鹽(MBMG-Br),再將其與三氯化鐵混合來制備含鐵的離子液體(MBMG-FeCl3Br)。將離子液體(MBMG-FeCl3Br)與碳納米管進行均勻混合,最后放置在磁舟里面,用次磷酸鈉進行磷化,制備出磷化鐵-碳納米管(FeP-CNTs)。電化學(xué)測試結(jié)果顯示,該催化劑的起峰電位是-70 m V,Tafel斜率為75.9 mV/dec。(3)本論文制備出酸化碳納米管,使用DCC作為脫水劑,將乙二胺連接到酸化碳納米管上,制備出乙二胺-碳納米管(EDA-CNTs)。電化學(xué)測試結(jié)果顯示,該催化劑的電化學(xué)析氫起峰電位是-150 mV,Tafel斜率為116 mV/dec。經(jīng)過XPS和FT-IR研究發(fā)現(xiàn),乙二胺與酸化碳納米管連接后形成的酰胺基團擁有較強的質(zhì)子吸附能力,多壁碳納米管能夠傳遞電子,促進質(zhì)子的還原,使得電催化劑擁有較好的電催化能力。
[Abstract]:Hydrogen is a kind of clean and friendly secondary energy, with the advantages of wide source, water, clean and environmental protection, recycling and so on.Electrolytic water hydrogen production is an efficient way of hydrogen production. The core technology of electrolytic water hydrogen production is cathodic hydrogen evolution catalyst.The existing catalysts for hydrogen evolution include Pt and other noble metal catalysts, such as non-noble metal catalysts, such as transition metal phosphates, such as C60OHH8 and C3N4 nonmetallic catalysts.The noble metal Pt has good electrocatalytic performance, but it has limited storage on the earth and high price, which limits the possibility of large-scale use of non-noble metal catalysts, such as Ni and Co, which have a certain gap compared with the noble metals.It will be corroded and passivated under acidic conditions.Transition metal phosphide catalysts have good electrocatalytic properties, such as MoPX WPX CoP.However, in the past, the synthesis process of phosphate electrocatalyst was complicated and accompanied by organic waste.In recent studies, nonmetallic C60(OH)8 and C3N4 have been developed, and these catalysts show good electrocatalytic activity.However, the synthesis path of this kind of electrocatalyst is complex and expensive.Therefore, it is urgent to study and prepare electrolysis hydrogen evolution catalyst with good performance.Based on the above research background, the following three aspects were studied: preparation of 1-aminopropyl-3-methyl imidazolium bromide functionalized carbon nanotube complexes (AmmiM-Br-CNTsN), ferric phosphate-carbon nanotube complexes (FeP-CNTs) and ethylenediamine-carbon nanotube complexes (EDA-CNTs).In this paper, the characterization of the prepared electrocatalysts for hydrogen evolution was carried out by means of the physical property evaluation methods, such as FT-IRN XPSO XRD and TGA.The electrochemical behavior of hydrogen evolution under acidic conditions was systematically evaluated, and the specific mechanism of hydrogen evolution was revealed. The innovative work of this paper was as follows: 1) in this paper, ionic liquid 1-aminopropyl-3-methyl imidazole bromine salt was prepared.The multiwalled carbon nanotubes were acidified.Under the action of dehydrating agent DCC, 1-aminopropyl-3-methyl imidazole-bromine carbon nanotube complex was prepared by linking ionic liquid onto multi-walled carbon nanotubes. The electrochemical test results showed that the ammiM-Br-MWCNTsC nanotube complex was composed of 1-aminopropyl-3-methyl imidazole-bromine salt carbon nanotubes (BCNTs).The electrochemical hydrogen evolution peak potential of the catalyst is -350 MV / Tafel slope of 125.62 MV / r.Through XPS and FT-IR studies, it was found that the amide-group formed by the alkyl 1-aminopropyl-3-methyl imidazolium bromide has strong proton adsorption ability, and multi-walled carbon nanotubes can transfer electrons and promote proton reduction.In this paper, the ionic liquid N-4-methyl-phenyl-N-methyl-phenyl-N-methylglucosyl bromide (MBMG-Brn) was prepared and mixed with ferric chloride to prepare the iron-containing ionic liquid MBMG-FeCl _ 3Br-O _ 3.The ionic liquid MBMG-FeCl3Brand carbon nanotubes (CNTs) were homogeneously mixed. Finally, they were placed in a magnetic boat and phosphated with sodium hypophosphite to prepare FeP-CNTsPhosphate nanotubes.The results of electrochemical measurement showed that the peak potential of the catalyst was -70 MV / Tafel slope of 75.9 MV / dec.3.) in this paper, acidified carbon nanotubes were prepared by using DCC as dehydrating agent, and ethylenediamine was connected to the acid carbon nanotubes to prepare EDA-CNTssof ethylenediamine.Electrochemical measurements showed that the peak potential of electrochemical hydrogen evolution of the catalyst was -150 MV / Tafel slope of 116 MV / r.The results of XPS and FT-IR showed that the amide-group formed by the bonding of ethylenediamine with the acidified carbon nanotubes had strong proton adsorption ability, and the multi-walled carbon nanotubes could transfer electrons and promote the proton reduction.The electrocatalyst has better electrocatalytic ability.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O643.36;TQ116.2
【相似文獻】
相關(guān)期刊論文 前1條
1 程鵬里,李強,段林麗,武振國;節(jié)能析氫電極的研究[J];化學(xué)世界;1997年11期
相關(guān)博士學(xué)位論文 前10條
1 楊明;碳納米管負載過渡金屬及其催化氧化性能研究[D];南京大學(xué);2014年
2 徐凱;電弧等離子體法制備石油殘渣基碳納米管及其應(yīng)用[D];中國石油大學(xué)(北京);2016年
3 李長金;微納層疊擠出設(shè)備研發(fā)及聚丙烯/碳納米管復(fù)合材料結(jié)構(gòu)與性能的研究[D];北京化工大學(xué);2017年
4 易義武;石墨烯/碳納米管復(fù)合粉體的制備及應(yīng)用研究[D];南昌大學(xué);2017年
5 田維亮;蛭石復(fù)合功能材料設(shè)計合成與性能研究[D];北京化工大學(xué);2017年
6 翟通;聚醚醚酮及其碳納米管復(fù)合材料表面金屬化的研究[D];天津大學(xué);2016年
7 劉金濤;基于納米材料的活性粉末混凝土及其基本力學(xué)性能研究[D];浙江大學(xué);2016年
8 任燁;咪唑類離子液體的負載對聚合物碳納米管復(fù)合材料性能的影響[D];北京化工大學(xué);2016年
9 馬偉偉;新型丙烯酸酯聚合物的制備及其在紙張表面改性方面的應(yīng)用[D];江蘇大學(xué);2017年
10 郝永超;鈷碳納米復(fù)合材料的設(shè)計合成及其在氧電催化領(lǐng)域中的應(yīng)用[D];北京化工大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 崔澤華;功能化碳納米管電解水析氫催化劑[D];西南大學(xué);2017年
2 張文斌;摻氮碳納米管的制備及其催化硝基化合物加氫性能研究[D];湘潭大學(xué);2017年
3 趙偉高;磁性多壁碳納米管的制備及其吸附性能研究[D];天津大學(xué);2016年
4 王鵬;考慮表面和非局部效應(yīng)的載流碳納米管波動分析[D];浙江大學(xué);2017年
5 張瀚;碳納米管負載鈀和釕納米顆粒的制備及表征[D];海南大學(xué);2017年
6 常藝;碳納米管改性熱塑性抗靜電復(fù)合材料的制備和性能研究[D];合肥工業(yè)大學(xué);2017年
7 李曉冬;碳纖維碳納米管共同增強復(fù)合材料剛度和漸進損傷分析[D];哈爾濱工業(yè)大學(xué);2017年
8 劉暢;改性多壁碳納米管的合成及其對金、鉍的吸附性能研究[D];河南師范大學(xué);2017年
9 陳廣歡;碳納米管導(dǎo)電復(fù)合材料墊片的制備與電阻蠕變性能研究[D];廣州大學(xué);2017年
10 李亞茹;基于碳納米管的微型富集器的制備與研究[D];電子科技大學(xué);2017年
,本文編號:1705589
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1705589.html