工程陶瓷的熱力效應(yīng)微細(xì)加工技術(shù)研究
本文選題:工程陶瓷 切入點:電化學(xué)放電復(fù)合磨削加工 出處:《江蘇大學(xué)》2017年碩士論文
【摘要】:隨著科學(xué)水平的進(jìn)步,微型機(jī)電系統(tǒng)(MEMS)得到了迅猛的發(fā)展,特別是近幾年,MEMS器件的需求與日俱增,以工程陶瓷為代表的絕緣高硬脆材料具有非導(dǎo)電、耐高溫、耐腐蝕、高硬度等特性,在MEMS中的應(yīng)用越來越廣泛。尤其是對于高溫、強(qiáng)腐蝕、強(qiáng)振動等極端惡劣的工作環(huán)境,采用工程陶瓷材料加工出的零件完全可以滿足使用要求。然而,以氧化鋁陶瓷為代表的工程陶瓷材料具有高熔點、高硬脆的特點,對其進(jìn)行微細(xì)加工非常困難。目前,對工程陶瓷等絕緣高硬脆材料主要采用超聲加工、磨料水射流加工、電化學(xué)放電加工和激光加工等特種微細(xì)加工方法。本文為了得到更高的加工效率、更好的加工質(zhì)量,主要對電化學(xué)放電復(fù)合磨削加工和皮秒激光加工氧化鋁工程陶瓷開展了深入研究,并通過分析熱力效應(yīng)的作用,對兩種加工技術(shù)的效果進(jìn)行了對比。主要研究內(nèi)容如下:1.研究了電化學(xué)放電復(fù)合磨削加工工程陶瓷的機(jī)理。重點分析了工具電極表面氣層的形成過程,探討了電化學(xué)放電加工去除材料主要是通過火花高溫?zé)嵛g和化學(xué)腐蝕,并建立了火花作用下的溫度模型。結(jié)合電化學(xué)放電加工原理和金剛石磨粒磨針加工工程陶瓷原理,研究了工程陶瓷表面被火花放電高溫軟化,再通過金剛石磨粒進(jìn)行塑性磨削的過程。2.構(gòu)建了電化學(xué)放電復(fù)合磨削加工試驗裝置,在氧化鋁工程陶瓷上展開了微孔加工試驗。采用單變量控制法,研究了脈沖電壓或加工頻率與微孔形貌、微孔深度、微孔進(jìn)口直徑和加工速率的規(guī)律。試驗結(jié)果顯示:脈沖電壓越高或者加工頻率越低,加工速率就會越高,加工出的微孔極限深度越深,但是微孔進(jìn)口直徑越大且微孔周圍形貌越差。3.用皮秒激光設(shè)備對氧化鋁工程陶瓷進(jìn)行了微孔加工試驗。探討了皮秒激光加工氧化鋁工程陶瓷的機(jī)理,然后介紹試驗裝置并進(jìn)行加工試驗,研究了掃描路徑、激光輸出功率、激光重復(fù)頻率、掃描速度和掃描次數(shù)等工藝參數(shù)與微孔形貌、微孔進(jìn)口直徑、微孔深度之間的規(guī)律。并將BP神經(jīng)網(wǎng)絡(luò)和遺傳算法融合后,應(yīng)用于皮秒激光加工的工藝參數(shù)優(yōu)化中,快速、準(zhǔn)確地尋得了目標(biāo)微孔進(jìn)口直徑所對應(yīng)的工藝參數(shù)組。4.對電化學(xué)放電復(fù)合磨削加工和皮秒激光加工的微孔進(jìn)口形貌、孔內(nèi)壁的表面粗糙度、加工孔的形狀精度和孔周圍的加工殘渣等進(jìn)行了對比分析。由于熱力效應(yīng)的作用方式不同,皮秒激光加工的微孔進(jìn)口圓度較好;電化學(xué)放電復(fù)合磨削加工出的微孔內(nèi)部較為光滑,基本無錐度,孔周圍無雜質(zhì)殘留。本文所研究的電化學(xué)放電復(fù)合磨削加工技術(shù)具有裝置簡單、加工成本低和加工柔性好等優(yōu)點;皮秒激光加工技術(shù)具有加工效率高、操作簡便和加工柔性好等優(yōu)點。它們都屬于微細(xì)制造領(lǐng)域內(nèi)的特種加工技術(shù),能有效的對工程陶瓷等絕緣高硬脆材料進(jìn)行微細(xì)加工,應(yīng)用前景非常廣闊。
[Abstract]:With the development of science, MEMS (Micro Electromechanical system) has been developing rapidly, especially the demand of MEMS devices has been increasing in recent years. The insulating high-hard brittle materials, represented by engineering ceramics, have non-conductive, high temperature and corrosion resistance. High hardness and other properties are more and more widely used in MEMS. Especially for the extremely bad working environment such as high temperature, strong corrosion and strong vibration, the parts made of engineering ceramics can completely meet the requirements of application. The engineering ceramic materials, such as alumina ceramics, have the characteristics of high melting point and high hardness and brittleness, so it is very difficult to micro-process them. At present, ultrasonic machining and abrasive water jet machining are mainly used for engineering ceramics and other insulating high-hard brittle materials. In order to obtain higher machining efficiency and better machining quality, electrochemical discharge machining and laser machining are special micro-machining methods. The electrochemical discharge composite grinding and picosecond laser processing of alumina engineering ceramics were studied, and the effect of thermal effect was analyzed. The effects of the two machining techniques are compared. The main research contents are as follows: 1. The mechanism of electrochemical discharge composite grinding for engineering ceramics is studied. The formation process of gas layer on the surface of tool electrode is analyzed. The removal of materials by electrochemical discharge machining is mainly through high temperature thermal erosion and chemical corrosion by spark, and the temperature model under the action of spark is established, which combines the principle of electrochemical discharge machining and the principle of diamond abrasive grinding needle machining engineering ceramics. The surface of engineering ceramics was softened by spark discharge at high temperature, and the process of plastic grinding by diamond abrasive particles was studied. Micropore machining experiments were carried out on alumina engineering ceramics. Pulse voltage, machining frequency, micropore morphology and micropore depth were studied by single variable control method. The experimental results show that the higher the pulse voltage or the lower the machining frequency, the higher the machining rate and the deeper the limit depth of the micropore. However, the larger the inlet diameter of the micropore is and the worse the morphology around the micropore is. 3. The micropore processing test of alumina engineering ceramics with picosecond laser equipment is carried out. The mechanism of picosecond laser processing of alumina engineering ceramics is discussed. Then the experimental device was introduced and the processing test was carried out. The process parameters, such as scanning path, laser output power, laser repetition rate, scanning speed and scanning times, were studied, such as the morphology of micropores, the inlet diameter of micropores, and so on. Combining BP neural network with genetic algorithm, it is applied to the optimization of technological parameters of picosecond laser processing. The process parameters corresponding to the inlet diameter of the target micropore are found accurately. 4. The inlet morphology of the micro hole and the surface roughness of the inner wall of the hole are obtained for electrochemical discharge composite grinding and picosecond laser machining. The shape accuracy of the machining hole and the machining residue around the hole are compared and analyzed. Due to the different thermal effect, the microhole inlet roundness of picosecond laser processing is better. The micro-hole machined by electrochemical discharge composite grinding has a smooth interior, no taper and no impurity around the hole. The electrochemical discharge composite grinding technology studied in this paper has a simple device. The picosecond laser processing technology has the advantages of high processing efficiency, easy operation and good processing flexibility. They all belong to the special processing technology in the field of micro manufacturing. It can be used in micro-machining of high-hard and brittle insulating materials such as engineering ceramics, and its application prospect is very broad.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ174.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周鑫;肖定邦;吳學(xué)忠;;微機(jī)電陀螺的現(xiàn)狀與發(fā)展趨勢[J];國防科技;2015年04期
2 孫艷琪;唐偉東;康小明;;基于力反饋控制進(jìn)給的電化學(xué)放電加工方法[J];電加工與模具;2015年03期
3 張青;WANG Chunhui;LIU Yongsheng;ZHANG Litong;CHENG Guanghua;;Picosecond Laser Machining of Deep Holes in Silicon Infiltrated Silicon Carbide Ceramics[J];Journal of Wuhan University of Technology(Materials Science Edition);2015年03期
4 曲志堅;張先偉;曹雁鋒;劉曉紅;馮曉華;;基于自適應(yīng)機(jī)制的遺傳算法研究[J];計算機(jī)應(yīng)用研究;2015年11期
5 于建元;劉志東;邱明波;王琳;田宗軍;;難導(dǎo)電硬脆材料噴霧電化學(xué)放電加工機(jī)理研究[J];中國機(jī)械工程;2013年09期
6 朱敬文;吳杰;康小明;趙萬生;;電化學(xué)放電加工電壓-電流特性的研究[J];電加工與模具;2013年02期
7 李慧奇;楊延菊;鄧聘;;基于神經(jīng)網(wǎng)絡(luò)結(jié)合遺傳算法的Jiles-Atherton磁滯模型參數(shù)計算[J];電網(wǎng)與清潔能源;2012年04期
8 王勇;;MEMS技術(shù)發(fā)展及應(yīng)用優(yōu)勢[J];飛航導(dǎo)彈;2011年05期
9 王軍;張淳;;硬脆材料超聲振動磨削的試驗研究[J];遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版);2010年02期
10 田欣利;楊俊飛;劉超;張保國;郭f ;;引弧微爆加工陶瓷新方法及其電源系統(tǒng)研制[J];裝甲兵工程學(xué)院學(xué)報;2009年06期
相關(guān)會議論文 前1條
1 紀(jì)仁杰;劉永紅;于麗麗;李小朋;;電火花磨削非導(dǎo)電工程陶瓷試驗研究[A];2007年中國機(jī)械工程學(xué)會年會論文集[C];2007年
相關(guān)博士學(xué)位論文 前4條
1 姜勝強(qiáng);預(yù)壓應(yīng)力下陶瓷材料的裂紋擴(kuò)展及其加工機(jī)理研究[D];湘潭大學(xué);2012年
2 魏臣雋;基于電解電火花效應(yīng)的硬脆絕緣材料微加工技術(shù)[D];上海交通大學(xué);2011年
3 王成;硬質(zhì)材料的激光三維雕刻技術(shù)研究[D];華中科技大學(xué);2007年
4 朱洪濤;精密磨料水射流加工硬脆材料沖蝕機(jī)理及拋光技術(shù)研究[D];山東大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 吳克勤;基于金剛石釬焊工藝的超聲輔助磨削工具研制[D];南京航空航天大學(xué);2014年
2 吳宇;聚氨酯合成革激光微孔化處理的研究[D];華中科技大學(xué);2014年
3 王秀奇;單層釬焊金剛石工具鉆孔加工工程陶瓷的仿真及預(yù)應(yīng)力加工[D];廣東工業(yè)大學(xué);2013年
4 朱敬文;基于力反饋控制進(jìn)給系統(tǒng)的電化學(xué)放電加工技術(shù)[D];上海交通大學(xué);2013年
5 劉振全;前驅(qū)體轉(zhuǎn)化法制備SiBN(C)陶瓷材料的研究[D];東華大學(xué);2013年
6 黃楷;納秒激光與金屬材料相互作用過程及微結(jié)構(gòu)加工研究[D];哈爾濱工業(yè)大學(xué);2012年
7 任耿鑫;電火花磨削復(fù)合加工鎳基高溫合金的研究[D];東北大學(xué);2012年
8 王硯麗;激光旋轉(zhuǎn)打孔技術(shù)的研究[D];華中科技大學(xué);2012年
9 時子青;新型壓阻式MEMS溫度傳感器的理論研究[D];西南交通大學(xué);2011年
10 黑華征;CBN砂輪高速磨削鈦合金試驗研究[D];南京航空航天大學(xué);2011年
,本文編號:1684053
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1684053.html