天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化學(xué)工程論文 >

微生物燃料電池新型復(fù)合碳電極的制備及其增強(qiáng)產(chǎn)電性能的機(jī)制研究

發(fā)布時(shí)間:2018-03-20 10:52

  本文選題:原位修飾 切入點(diǎn):石墨烯 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:微生物燃料電池(Microbial fuel cells,MFCs)作為新型節(jié)能污水處理技術(shù),能降解有機(jī)污染物并直接產(chǎn)生清潔電能,在污水處理、生物傳感器、生態(tài)修復(fù)等領(lǐng)域有巨大的應(yīng)用潛力。但是,成本高和輸出功率低限制了MFCs實(shí)際應(yīng)用。其主要瓶頸是電極材料成本高、制備方法復(fù)雜、電化學(xué)性能差。因此,開發(fā)制備方法簡單、性能優(yōu)異的新型電極成為推進(jìn)MFCs實(shí)際應(yīng)用的關(guān)鍵。復(fù)合碳電極是當(dāng)前運(yùn)用最為廣泛的電極材料之一,但是存在制備方法復(fù)雜、加工耗時(shí)長、細(xì)胞與電極間作用機(jī)制不明確等問題,需要進(jìn)一步改進(jìn)和深入研究。本研究采用原位修飾方法分別制備了石墨烯原位修飾(GO)和聚苯胺原位修飾(PANI)的石墨紙復(fù)合電極,并開發(fā)了一步在石墨紙表面原位同時(shí)修飾石墨烯和聚苯胺的新方法,制備獲得了石墨烯/聚苯胺修飾的復(fù)合石墨紙電極(GO/PANIOS)。本研究進(jìn)一步對材料特性及其在MFCs中的產(chǎn)電性能進(jìn)行了研究,并闡明了新型復(fù)合碳電極對MFCs產(chǎn)電性能的增強(qiáng)機(jī)制。研究結(jié)果總結(jié)如下:1)采用簡單的電化學(xué)方法(外加10V直流電壓)在石墨紙電極(GP)表面成功快速(4分鐘)剝離形成石墨烯層,制備獲得了GO電極。通過對MFCs性能比較發(fā)現(xiàn),以GO電極為陽極的MFCs的最大功率密度相比GP電極提高了4.1倍。進(jìn)一步研究發(fā)現(xiàn),該原位修飾的石墨烯能提高電極的比表面積和潤濕性,強(qiáng)化MFCs中產(chǎn)電微生物和電極材料間的直接電子傳遞過程,進(jìn)而增強(qiáng)MFCs產(chǎn)電性能。2)采用化學(xué)氧化法,對GP電極進(jìn)行了聚苯胺的緩慢低溫原位聚合(12小時(shí)),制備了PANIchem電極;采用循環(huán)伏安法,以0.1 M硫酸和0.05 M苯胺混合液為電解液,利用三電極體系,在GP電極表面成功原位修飾了聚苯胺(20分鐘),制備了PANICV電極。通過對MFCs性能比較研究發(fā)現(xiàn),兩種方法修飾的聚苯胺均能增強(qiáng)MFCs產(chǎn)電性能。進(jìn)一步對MFCs電化學(xué)行為進(jìn)行研究發(fā)現(xiàn),該原位修飾的聚苯胺能提高電極的比表面積,并同步增強(qiáng)MFCs中產(chǎn)電微生物和電極間的直接和間接電子傳遞過程,進(jìn)而增強(qiáng)MFCs產(chǎn)電性能。3)基于上述研究發(fā)現(xiàn)(原位修飾石墨烯和聚苯胺均能促進(jìn)MFCs性能),本研究綜合改進(jìn)了石墨烯原位制備和聚苯胺修飾方法,開發(fā)了一種一步、原位在石墨紙電極表面快速(4分鐘)修飾石墨烯/聚苯胺復(fù)合材料的新方法,成功在GP電極表面原位合成了石墨烯/聚苯胺復(fù)合材料,制備了GO/PANIOS電極。通過材料表征發(fā)現(xiàn),聚苯胺是以相互交錯的納米絲結(jié)構(gòu)附著于石墨烯上,并以部分氧化和導(dǎo)電狀態(tài)存在。對相應(yīng)MFCs性能進(jìn)行研究發(fā)現(xiàn),以GO/PANIOS電極為陽極MFCs的最大功率密度相比修飾前提高了22倍。進(jìn)一步對MFCs電化學(xué)行為進(jìn)行研究發(fā)現(xiàn),該原位修飾的石墨烯/聚苯胺復(fù)合材料能提高電極比表面積和潤濕性,并能協(xié)同促進(jìn)MFCs中產(chǎn)電菌與電極間的直接和間接電子傳遞過程,進(jìn)而增強(qiáng)MFCs的產(chǎn)電性能。
[Abstract]:Microbial fuel cells (MFCs), as a new energy-saving sewage treatment technology, can degrade organic pollutants and generate clean electricity directly. It has great application potential in sewage treatment, biosensor, ecological restoration and other fields. High cost and low output power limit the practical application of MFCs. The main bottleneck is the high cost of electrode materials, complex preparation methods and poor electrochemical performance. The new electrode with excellent performance has become the key to promote the practical application of MFCs. The composite carbon electrode is one of the most widely used electrode materials at present, but the preparation method is complex and the processing time is long. In this study, graphene in situ modification (GOG) and Polyaniline (pani) graphite paper composite electrodes were prepared by in situ modification. A new method was developed to modify graphene and Polyaniline simultaneously on the surface of graphite paper. A graphene / Polyaniline modified composite graphite paper electrode was prepared. The properties of the materials and their electrical properties in MFCs were studied. The enhancement mechanism of the new composite carbon electrode on the electrical properties of MFCs was described. The results were summarized as follows: 1) the graphene layer was formed by simple electrochemical method (adding 10V DC voltage) on the surface of the graphite paper electrode for 4 minutes. Go electrode was prepared, and the maximum power density of MFCs with go electrode as anode was 4.1 times higher than that of GP electrode by comparing the performance of MFCs with go electrode. It was found that the maximum power density of MFCs with go electrode as anode was 4.1 times higher than that of GP electrode. The in situ modified graphene can improve the specific surface area and wettability of the electrode, enhance the direct electron transfer process between the electroproducing microorganisms and the electrode materials in MFCs, and then enhance the electrical properties of MFCs. The PANIchem electrode was prepared by slow low temperature in situ polymerization of Polyaniline on GP electrode for 12 hours, and the three-electrode system was used by cyclic voltammetry with a mixture of 0. 1 M sulfuric acid and 0. 05 M aniline as electrolyte. The PANICV electrode was prepared by in situ modification of Polyaniline on the surface of GP electrode for 20 minutes. By comparing the properties of MFCs, it was found that both modified Polyaniline could enhance the electrical properties of MFCs. Furthermore, the electrochemical behavior of MFCs was studied. The in situ modification of Polyaniline can increase the specific surface area of the electrode and synchronously enhance the direct and indirect electron transfer process between the electroproducing microorganisms and the electrode in MFCs. Based on the findings above, both in situ modification of graphene and Polyaniline can promote the performance of MFCs. In this study, a new method of in situ preparation of graphene and modification of Polyaniline was developed by improving the method of in situ preparation of graphene and modification of Polyaniline. The graphene / Polyaniline composite was successfully synthesized on the surface of GP electrode by in situ modification of graphene / Polyaniline composite on the surface of graphite paper electrode for 4 minutes. The GO/PANIOS electrode was prepared. Polyaniline was attached to graphene with interlaced nanowires and existed in partial oxidation and conductive state. The properties of the corresponding MFCs were studied. The maximum power density of MFCs at GO/PANIOS electrode was 22 times higher than that before modification. The electrochemical behavior of MFCs was further studied. It was found that the in situ modified graphene / Polyaniline composite could improve the specific surface area and wettability of the electrode. It can promote the direct and indirect electron transfer process between the electroproducing bacteria and the electrode in MFCs, and then enhance the electrical properties of MFCs.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O646.54;TM911.45

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳禧;朱能武;李小虎;;串聯(lián)微生物燃料電池的電壓反轉(zhuǎn)行為[J];環(huán)境科學(xué)與技術(shù);2011年08期

2 馮穎;黃世華;康凱;段曉霞;;石墨烯片的制備與表征[J];新型炭材料;2011年01期

3 趙麗坤;閆蕾蕾;李景晨;呂瑩瑩;郝耀彤;;產(chǎn)電微生物與微生物燃料電池研究進(jìn)展[J];安徽農(nóng)業(yè)科學(xué);2010年26期

4 關(guān)榮鋒;王杏;;鹽酸摻雜制備導(dǎo)電性聚苯胺的工藝優(yōu)化研究[J];高分子通報(bào);2009年12期

5 李瑜;鄭建龍;井新利;;化學(xué)氧化聚合制備微/納米結(jié)構(gòu)聚苯胺研究進(jìn)展[J];化工新型材料;2009年11期

6 王鑫;馮玉杰;曲有鵬;李冬梅;李賀;任南琪;;溫度對啤酒廢水微生物燃料電池產(chǎn)電性能的影響[J];環(huán)境科學(xué);2008年11期

7 趙磊;馮澤勝;張鈞;高海軍;;微生物燃料電池性能的影響因素研究[J];中國農(nóng)學(xué)通報(bào);2008年11期

8 詹亞力;王琴;張佩佩;閆光緒;郭紹輝;;微生物燃料電池影響因素及作用機(jī)理探討[J];高等學(xué);瘜W(xué)學(xué)報(bào);2008年01期

9 鄒勇進(jìn);孫立賢;徐芬;楊黎妮;;以新亞甲基藍(lán)為電子媒介體的大腸桿菌微生物燃料電池的研究[J];高等學(xué);瘜W(xué)學(xué)報(bào);2007年03期

10 黃霞;范明志;梁鵬;曹效鑫;;微生物燃料電池陽極特性對產(chǎn)電性能的影響[J];中國給水排水;2007年03期

相關(guān)碩士學(xué)位論文 前3條

1 周揚(yáng);石墨烯聚苯胺修飾電極在雙室微生物燃料電池中的應(yīng)用研究[D];長安大學(xué);2015年

2 孔令迎;石墨烯和碳納米材料改性陽極在MFC中的應(yīng)用[D];青島科技大學(xué);2014年

3 李斯哲;基于石墨烯修飾電極的微生物燃料電池產(chǎn)電性能與機(jī)理[D];華南理工大學(xué);2012年

,

本文編號:1638755

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1638755.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶70aa5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com