空分工藝過程優(yōu)化研究
本文選題:空分 切入點(diǎn):液氧 出處:《青島科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:我國(guó)作為能源化工產(chǎn)業(yè)大國(guó),各行各業(yè)對(duì)空分產(chǎn)品種類和產(chǎn)量的需求日益增多,對(duì)空分設(shè)備的需求也呈現(xiàn)多樣化。液氧作為空分工藝的重要產(chǎn)品,探討不同工藝對(duì)其產(chǎn)量的影響具有重要意義。本文采用內(nèi)壓縮膨脹空氣進(jìn)上塔的空分工藝流程,通過對(duì)該工藝的研究分析得出影響液氧產(chǎn)量的因素,并分別對(duì)空分工藝有氬精餾與無氬精餾進(jìn)行對(duì)比,以確定氬塔對(duì)空分工藝液氧產(chǎn)量的影響,從而得出不同工藝下液氧產(chǎn)量的差異。利用Aspen Plus V8.4對(duì)空分工藝進(jìn)行數(shù)學(xué)建模,根據(jù)空分工藝流程的生產(chǎn)數(shù)據(jù),采用修正的RKS-BM物性方法,對(duì)精餾過程進(jìn)行有效的求解運(yùn)算。通過對(duì)空分工藝的模擬計(jì)算,確定了影響空分工藝產(chǎn)品產(chǎn)量的一些關(guān)鍵因素,如下塔回流比、塔頂液氮采出量、塔底液空含氧量、上塔污氮?dú)獠沙隽、氬餾分采出量以及采出位置等,并對(duì)這些因素進(jìn)行調(diào)試與分析,得出工藝的最佳值?諝膺M(jìn)料的體積流量為77600Nm3/h,在有氬生產(chǎn)工藝中,氧產(chǎn)量為15500Nm3/h,氧氣產(chǎn)量為15140Nm3/h,液氧產(chǎn)量為360Nm3/h,純度為99.6%,提取率約為95%;液氬產(chǎn)量為460Nm3/h,純度大于99.99%;氮?dú)猱a(chǎn)量為30700 Nm3/h,純度大于99.99%。在無氬生產(chǎn)工藝中,氧產(chǎn)量為15400Nm3/h,氧氣產(chǎn)量為14570Nm3/h,液氧產(chǎn)量為830Nm3/h,純度為99.6%,提取率約為94%;氮?dú)猱a(chǎn)量為30700Nm3/h,純度大于99.99%。對(duì)兩種工藝模擬得知,當(dāng)膨脹空氣量占加工空氣量的14%時(shí),帶增效塔的空分工藝液氧的產(chǎn)量明顯高于帶氬塔的空分工藝,液氧產(chǎn)量提高約130%,液氧產(chǎn)量的經(jīng)濟(jì)效益顯著增加。但是,帶增效塔空分工藝氧提取率卻低于帶氬系統(tǒng),說明生產(chǎn)過程中氧有一定程度的消耗。通過對(duì)VB與Aspen Plus自動(dòng)化接口的探索,實(shí)現(xiàn)VB對(duì)Aspen Plus內(nèi)部數(shù)據(jù)的讀寫,這樣便可在一個(gè)VB呈現(xiàn)的界面上對(duì)變量進(jìn)行調(diào)節(jié),達(dá)到對(duì)整個(gè)空分工藝氧產(chǎn)量的優(yōu)化操作,從而減少用戶的操作量。
[Abstract]:As a large country of energy and chemical industry, the demand for air separation products and production in various industries is increasing day by day, and the demand for air separation equipment is also diversified. Liquid oxygen is an important product of air separation process. It is of great significance to discuss the influence of different processes on the output. In this paper, the factors affecting the output of liquid oxygen are obtained through the study and analysis of the air separation process in which the inner compressed expanded air enters the upper tower. In order to determine the effect of argon column on liquid oxygen production of air separation process, the difference of liquid oxygen production under different processes was obtained. The mathematical model of air separation process was established by using Aspen Plus V8.4. According to the production data of air separation process, the modified RKS-BM physical property method is used to solve the distillation process effectively. Through the simulation calculation of the air separation process, some key factors affecting the production of air separation process are determined. The following factors are as follows: tower reflux ratio, top liquid nitrogen extraction rate, oxygen content in liquid space at the bottom of the tower, nitrogen recovery rate from the upper tower sewage, argon distillate yield and extraction location, etc. These factors are adjusted and analyzed. The optimum value of the process is obtained. The volume flow rate of air feed is 77600Nm ~ 3 / h, and in the process of argon production, The oxygen output is 15500 nm / h, the oxygen output is 15140 nm 3 / h, the liquid oxygen production is 360 nm 3 / h, the purity is 99.6%, the extraction rate is about 95%; the liquid argon production is 460 nm 3 / h, the purity is greater than 99.99%; the nitrogen production is 30700 nm 3 / h, the purity is greater than 99.99%. The oxygen output is 15400Nm / h, the oxygen output is 14570Nm / h, the liquid oxygen output is 830Nm ~ 3 / h, the purity is 99.6, the extraction rate is about 94%, the nitrogen output is 30700 nm ~ 3 / h, the purity is greater than 99.99%. The liquid oxygen production of the air separation process with a synergistic tower is obviously higher than that of the air separation process with argon column, and the liquid oxygen output increases by about 130, and the economic benefit of the liquid oxygen output increases significantly. However, the oxygen extraction rate of the air separation process with the enhanced column is lower than that of the air separation process with the argon column. By exploring the automatic interface between VB and Aspen Plus, VB can read and write the internal data of Aspen Plus, so that the variables can be adjusted on a VB interface. The optimal operation of oxygen output of the whole air separation process is achieved, thus reducing the operation capacity of the user.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ116.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李景芬;;空氣壓縮機(jī)冷卻系統(tǒng)改造[J];天津冶金;2014年03期
2 薛科創(chuàng);;常用化工流程模擬軟件的比較[J];當(dāng)代化工;2014年05期
3 蔣旭;江楚標(biāo);徐偉民;丁友勝;趙小瑩;;當(dāng)前國(guó)產(chǎn)空分設(shè)備發(fā)展?fàn)顩r[J];低溫與特氣;2013年06期
4 李燕鵬;;空分裝置制冷量及冷損構(gòu)成的討論[J];低溫與特氣;2013年06期
5 趙亞仙;向文國(guó);陳時(shí)熠;;化學(xué)鏈高溫空分制氧性能評(píng)價(jià)[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年04期
6 錢吉慶;鄭甜華;;帶增效塔空分設(shè)備新增提氬系統(tǒng)的流程探討[J];深冷技術(shù);2013年03期
7 丁傳琪;;5000Nm~3/h空分的兩種內(nèi)壓縮流程比較[J];低溫與特氣;2013年02期
8 祝桂兄;李強(qiáng);趙彪;;空分常見“氮塞”故障分析及排除[J];長(zhǎng)沙大學(xué)學(xué)報(bào);2013年02期
9 冷全起;劉代勇;張偉杰;;膨脹空氣進(jìn)上塔空分流程中氧、氬提取率與液體產(chǎn)量關(guān)系的探討[J];深冷技術(shù);2012年07期
10 張建府;;大型煤化工空分技術(shù)與設(shè)備發(fā)展現(xiàn)狀[J];煤化工;2012年03期
相關(guān)會(huì)議論文 前1條
1 栗曉宏;喬哲;吳向軍;邱發(fā)春;曹岳;;5#空分自動(dòng)變負(fù)荷改造[A];河北冶金學(xué)會(huì)2013年度空分專業(yè)學(xué)術(shù)交流會(huì)論文集[C];2013年
相關(guān)碩士學(xué)位論文 前10條
1 傅琦文;基于全聯(lián)立方程的空分過程模擬與優(yōu)化[D];浙江大學(xué);2015年
2 楊勇;基于Aspen Plus的液化天然氣冷能利用模擬分析[D];大連理工大學(xué);2014年
3 李蘇巧;空分18000Nm~3/h純氮裝置流程的穩(wěn)態(tài)及動(dòng)態(tài)模擬[D];天津大學(xué);2013年
4 劉琴;空分系統(tǒng)中主精餾塔參數(shù)的模擬分析[D];天津大學(xué);2012年
5 李美玉;兗礦國(guó)宏30000Nm~3/h空分精餾塔性能和模擬[D];天津大學(xué);2012年
6 李輝;空氣分離過程中多機(jī)同步運(yùn)行狀態(tài)參數(shù)變化規(guī)律的研究[D];東北大學(xué);2012年
7 高凱;換熱網(wǎng)絡(luò)模擬系統(tǒng)的開發(fā)[D];青島科技大學(xué);2012年
8 于粉林;洛陽石化空分裝置擴(kuò)能改造項(xiàng)目研究[D];天津大學(xué);2012年
9 張?jiān)旅?隔壁精餾塔技術(shù)應(yīng)用于反應(yīng)精餾及空氣分離的研究[D];中國(guó)石油大學(xué);2010年
10 李立兵;唐鋼20000Nm~3/h制氧機(jī)變負(fù)荷生產(chǎn)工藝參數(shù)優(yōu)化的研究[D];天津大學(xué);2008年
,本文編號(hào):1635788
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1635788.html