基于納米碳材料的酶生物燃料電池陽(yáng)極構(gòu)建與性能研究
發(fā)布時(shí)間:2018-03-07 15:52
本文選題:酶生物燃料電池 切入點(diǎn):納米碳材料 出處:《湖南大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:酶生物燃料電池(EBFC)是一類以生物酶作為催化劑直接將化學(xué)能轉(zhuǎn)化為電能的轉(zhuǎn)換裝置,具有清潔、高效、成本低廉、操作簡(jiǎn)單、燃料可再生等優(yōu)點(diǎn),在能源匱乏、環(huán)境污染嚴(yán)重的今天備受關(guān)注。如今,EBFC的研究主要面臨輸出功率低下和電池壽命短兩大難題,這兩大問(wèn)題制約了EBFC的發(fā)展及應(yīng)用。改善這兩大問(wèn)題可以從酶或中間體的固定材料和固定方法入手。為了提高EBFC的輸出功率和使用壽命,選擇合適的酶或中間體的固定材料和固定方法是目前EBFC研究的重點(diǎn)。本論文采用不同方法實(shí)現(xiàn)葡萄糖氧化酶(GOD)和中間體二茂鐵(Fc)的固定,以此構(gòu)建了幾種酶電極,并對(duì)酶電極相應(yīng)的性能進(jìn)行了研究。具體的研究?jī)?nèi)容如下:(1)利用芘硼酸的硼酸基團(tuán)與GOD的糖基之間的反應(yīng)實(shí)現(xiàn)GOD芘基功能化,再利用芘基與CNTs之間強(qiáng)烈的π-π堆積作用實(shí)現(xiàn)GOD在CNTs表面的固定,以此修飾GC電極制得GOD-PBA/CNTs/GC酶電極。電化學(xué)性能研究表明:與GOD/CNTs/GC電極相比,GOD-PBA/CNTs/GC電極能夠負(fù)載更多的GOD且穩(wěn)定性也得到提高。以GOD-PBA/CNTs/GC電極為陽(yáng)極、E-TEK Pt/C為陰極構(gòu)建的葡萄糖/氧氣EBFC的開(kāi)路電位(Voc)和短路電流(isc)分別為0.44 V和0.43 m A cm-2,且在0.12 V時(shí)最大輸出功率密度為28μW cm-2。(2)利用β-環(huán)糊精在堿性水熱條件下原位還原氧化石墨烯(GO)與HAuCl_4制備金納米粒子修飾的石墨烯(GNs-Au),利用半胱氨酸的 橋‖作用,先將半胱氨酸與二茂鐵甲醛通過(guò)席夫堿反應(yīng)共價(jià)連接,然后利用半胱氨酸中的巰基與金納米粒子之間的作用實(shí)現(xiàn)中間體在石墨烯表面的固定化,最后用GA將GOD交聯(lián)到其表面制備生物陽(yáng)極(GNs-Au-Fc/GOD-GA/GC電極)。與GNs/Fc/GOD-GA/GC電極和GNs-Au/GOD-GA/GC電極相比,GNs-Au-Fc/GOD-GA/GC電極有著明顯的優(yōu)勢(shì)。該生物陽(yáng)極與E-ETK Pt/C電極構(gòu)筑的葡萄糖/氧氣EBFC也有著較好的性能。(3)用功能化的CNTs固定二茂鐵制得CNTs-Fc納米材料,然后用CNTs-Fc與IL研磨得到的復(fù)合凝膠固定GOD制成GOD@CNTs-Fc/IL復(fù)合凝膠,將其涂到電極表面制備了GOD@CNTs-Fc/IL/GC酶電極,并且顯示出很好的催化氧化葡萄糖的性能。GOD@CNTs-Fc/IL/GC電極作為生物陽(yáng)極與E-TEK Pt/C生物陰極構(gòu)建的EBFC開(kāi)路電位是0.66 V,最大輸出功率60μW cm~(-2)。
[Abstract]:Enzyme biofuel cell (EBFC) is a kind of conversion device which directly converts chemical energy into electric energy with enzyme as catalyst. It has the advantages of cleanness, high efficiency, low cost, simple operation, renewable fuel and so on. Today, serious environmental pollution has attracted much attention. Nowadays, the research of EBFC is faced with two major problems: low output power and short battery life. These two problems restrict the development and application of EBFC. To improve these two problems, we can start with the fixed materials and methods of enzyme or intermediate. In order to increase the output power and service life of EBFC, It is the focus of EBFC research to select suitable immobilization materials and methods of enzyme or intermediate. In this paper, we use different methods to immobilize glucose oxidase and ferrocene ferrocene (Fcc), and construct several enzyme electrodes. The specific research contents are as follows: 1) GOD pyrene functionalization is realized by the reaction between pyrene boric acid borate group and GOD glycosyl group. Using the strong 蟺-蟺 stacking interaction between pyrene group and CNTs, GOD was immobilized on the surface of CNTs. The electrochemical properties of GOD-PBA/CNTs/GC enzyme electrode prepared by modified GC electrode showed that compared with the GOD/CNTs/GC electrode, the GDD PBA / CNTs / GC electrode could support more GOD and the stability was improved. The glucose / TEK Pt/C cathode was constructed by using the GOD-PBA/CNTs/GC electrode as the anode and E-TEK Pt/C as the cathode. The open-circuit potential and short-circuit current of oxygen EBFC were 0.44V and 0.43mAcm-2, respectively, and the maximum output power density was 28 渭 W cm-2.02 at 0.12V) the gold was prepared by in-situ reduction of graphene oxide with 尾 -cyclodextrin under alkaline hydrothermal conditions with HAuCl_4. Nanocrystalline modified graphene GNs-Aun, using cysteine as a bridge, First, cysteine and ferrocene formaldehyde were covalently connected by Schiff base reaction, then the intermediates were immobilized on the surface of graphene by the interaction between thiol in cysteine and gold nanoparticles. Finally, the GNs-Au-Fc / GOD-GA-GC electrode of biological anode was prepared by crosslinking GOD to its surface by GA. Compared with GNs/Fc/GOD-GA/GC electrode and GNs-Au/GOD-GA/GC electrode, the GNs-Au-Fc / GOD-GA-GC electrode has obvious advantages. The glucose / oxygen EBFC constructed by this biological anode and E-ETK Pt/C electrode also has good properties. CNTs-Fc nanomaterials were prepared by immobilization of ferrocene with functionalized CNTs. Then the GOD@CNTs-Fc/IL composite gel was prepared by immobilizing GOD with the composite gel of CNTs-Fc and IL, and the GOD@CNTs-Fc/IL/GC enzyme electrode was prepared by coating it on the surface of the electrode. The EBFC open-circuit potential of CNTs-Fcr / L / GC electrode constructed as a biological anode and E-TEK Pt/C biological cathode is 0.66 V and the maximum output power is 60 渭 W / cm ~ (-2).
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM911.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 黃毅;覃曉麗;李奏;傅迎春;謝青季;姚守拙;;殼聚糖/葡萄糖氧化酶-聚氨基苯硼酸-納米金/鍍金金電極用于生物傳感和生物燃料電池研究[J];化學(xué)傳感器;2012年01期
2 寶s,
本文編號(hào):1579941
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1579941.html
最近更新
教材專著