N-吡啶聯(lián)吡唑銥配合物催化氨硼烷水解放氫
本文選題:氫能源 切入點(diǎn):氨硼烷 出處:《大連理工大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著世界各國(guó)經(jīng)濟(jì)的迅猛發(fā)展,人類(lèi)對(duì)能源的需求逐漸增大,三大傳統(tǒng)化石能源日益枯竭,新能源勢(shì)必成為未來(lái)能源的支柱。清潔能源氫氣具有燃燒熱值高、不排放任何污染物的特質(zhì),是最具發(fā)展?jié)摿Φ男履茉。?dāng)前,氫氣的有效儲(chǔ)存是限制氫能源發(fā)展的瓶頸。在眾多的儲(chǔ)氫材料中,氨硼烷質(zhì)量?jī)?chǔ)氫密度高(19.6 wt%),具有安全無(wú)毒、熱穩(wěn)定性和化學(xué)穩(wěn)定性好的特性,擁有非常好的商業(yè)應(yīng)用前景。催化氨硼烷水解制氫以放氫溫度適中、放氫量大、環(huán)境友好等優(yōu)點(diǎn)而成為該領(lǐng)域研究的熱點(diǎn)。目前多相催化劑存在諸多缺點(diǎn),例如催化劑用量大、放氫速率慢、副產(chǎn)有毒氣體等。相比而言,均相催化劑催化中心分布均勻,在催化活性和選擇性方面有極大優(yōu)勢(shì)。而有關(guān)均相催化的氨硼烷水解制氫研究甚少見(jiàn)諸報(bào)道,究其原因在于缺乏穩(wěn)定高效的水溶性催化劑,因此開(kāi)發(fā)研究高效、高選擇性的水溶性均相催化劑對(duì)于理解催化氨硼烷水解機(jī)制具有重要的學(xué)術(shù)價(jià)值,同時(shí)對(duì)于推動(dòng)氨硼烷商業(yè)化應(yīng)用具有重要的現(xiàn)實(shí)意義。本文設(shè)計(jì)合成了四種水溶性良好的N-毗啶聯(lián)吡唑類(lèi)銥配合物,并應(yīng)用于催化氨硼烷水解制氫反應(yīng)。首先合成了含取代基(Me, MeO, HO)的N-吡啶聯(lián)吡唑雙齒配體。通過(guò)這些配體與銥水合物[Cp*Ir(H2O)3]SO4 (Cp*=C5Me5)反應(yīng)制備了四種水溶性催化劑。隨后利用該類(lèi)催化劑來(lái)催化氨硼烷水解放氫。利用[Cp*Ir(6-OH-py-pz)(H2O)]SO4對(duì)反應(yīng)溫度、溶液pH值、底物濃度、催化劑用量等條件進(jìn)行了優(yōu)化。在確定的最優(yōu)條件下比較了幾種催化劑的活性,結(jié)果顯示[Cp*Ir(6-OH-py-pz)(H2O)] SO4表現(xiàn)出了最好的催化效果。平均轉(zhuǎn)化頻率(TOF)達(dá)到360 h-1,1.5小時(shí)后所有氨硼烷被徹底水解。在0.3 M氨硼烷條件下9小時(shí)后催化水解所有氨硼烷,轉(zhuǎn)化數(shù)(TON)達(dá)到了1622。[Cp*Ir(6-Me-py-pz)(H2O)] SO4的活性則很低,在加入催化劑0.25小時(shí)后才緩慢放氫。[Cp*Ir(4-Me-py-pz)(H2O)] SO4的活性要高于[Cp*Ir(6-Me-py-Pz)(H2O)]SO4,加入催化劑后反應(yīng)體系立刻放氫。這說(shuō)明鄰位取代甲基的空間位阻作用抑制了催化反應(yīng)的進(jìn)行。催化劑[Cp*Ir(6-MeO-py-pz)(H2O)] SO4是所有四種催化劑中活性最低的,放氫實(shí)驗(yàn)持續(xù)了31小時(shí)后,氨硼烷的轉(zhuǎn)化率大約只有50%。結(jié)合文獻(xiàn)報(bào)道和實(shí)驗(yàn)結(jié)果,本文提出了利用[Cp*Ir(6-OH-py-pz)(H2O)] SO4催化氨硼烷水解放氫的可能機(jī)理。其中配體上鄰位的羥基增加了催化劑的水溶性。更重要的是堿性條件下生成的氧負(fù)離子(0-)和金屬中心協(xié)同作用,分別與氨硼烷的N-H和B-H形成氫鍵,從而促進(jìn)脫氫反應(yīng)進(jìn)行,大大提升了催化劑的活性。
[Abstract]:With the rapid development of the world economy, the demand for energy increases gradually, and the three traditional fossil energy sources are increasingly exhausted. The new energy is bound to become the pillar of the future energy. Hydrogen, the clean energy, has a high combustion calorific value. At present, the effective storage of hydrogen is the bottleneck limiting the development of hydrogen energy. Among the numerous hydrogen storage materials, the mass hydrogen storage density of aminoborane is 19.6 wtcm, which is safe and non-toxic. Good thermal and chemical stability, good commercial application prospects. Catalytic hydrolysis of ammonioborane to produce hydrogen at a moderate temperature and large amount of hydrogen, At present, heterogeneous catalysts have many disadvantages, such as large amount of catalyst, slow hydrogen release rate, toxic gas by-product and so on. It has great advantages in catalytic activity and selectivity. However, there are few reports about homogeneous catalytic hydrolysis of aminoborane to produce hydrogen, which is due to the lack of stable and efficient water-soluble catalyst. Highly selective water-soluble homogeneous catalysts are of great academic value in understanding the mechanism of catalytic hydrolysis of aminoborane. At the same time, it is of great practical significance to promote the commercial application of aminoborane. In this paper, we have designed and synthesized four iridium complexes with good water solubility. The N-pyridine-bipyrazole didentate ligands containing substituted groups were first synthesized. Four kinds of water-soluble catalysts were prepared by the reaction of these ligands with iridium hydrate [Cp*Ir(H2O)3] SO4 (CpPX) C5Me5Me5.Then, four kinds of water-soluble catalysts were prepared by the reaction of these ligands with iridium hydrate [Cp*Ir(H2O)3] SO4. This kind of catalyst was used to catalyze the release of hydrogen from ammonioborane in water. The reaction temperature was determined by [CpHIr-6-OH-py-pzOH _ 2O] SO4. The pH value of solution, the concentration of substrate and the amount of catalyst were optimized. The activity of several kinds of catalysts was compared under the determined optimum conditions. The results showed that the SO4 showed the best catalytic effect. The average conversion frequency (TOF) reached 360h-11 (1.5 h) and all the aminoborane was completely hydrolyzed after 9 hours at 0.33M aminoborane, and all aminoborane was hydrolyzed completely after 9 hours under the condition of 0.3m aminoborane. The activity of SO4 is very low. The catalytic activity of SO4 was higher than that of [CpPIR-6-Me-py-Pe-Pzhi-H _ 2O] so _ 4, which indicated that the steric steric inhibition of ortho-substituted methyl inhibited the catalytic reaction. [CpPIr-6-MeO-py-pzni-H _ 2O]. SO4 is the least active of all four catalysts. The hydrogen release experiment lasted for 31 hours, and the conversion rate of aminoborane was only about 50%. In this paper, the possible mechanism of using [CpHIrn 6-OH-py-pznH _ 2O] SO4 to catalyze the release of hydrogen from ammonioborane water is proposed. The water solubility of the catalyst is increased by the ortho hydroxyl group on the ligand, and more importantly, the oxygen anion (0) produced under the basic condition is synergistic with the metal center. Hydrogen bonds were formed with N-H and B-H of aminoborane respectively, which promoted the dehydrogenation reaction and greatly enhanced the activity of the catalyst.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TQ426;TQ116.2
【共引文獻(xiàn)】
相關(guān)期刊論文 前1條
1 謝廣文;王麗娜;李忠;;硼氫化鈉水解制氫金屬催化劑的研究進(jìn)展[J];青島科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年01期
相關(guān)博士學(xué)位論文 前2條
1 徐勇;生物油重整合成氣的制備及其用于生物燃料合成的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
2 昌晶;多組多鈷基催化劑催化硼氫化鈉制氫技術(shù)的研究[D];青島科技大學(xué);2014年
相關(guān)碩士學(xué)位論文 前7條
1 王書(shū)海;室溫化學(xué)鍍鎳基稀土(Gd、La、Ce)合金及在NaBH4產(chǎn)氫中的應(yīng)用[D];青海師范大學(xué);2013年
2 張雪瑤;Pr~(3+)/Yb~(3+)摻雜12CaO·7Al_2O_3粉末上轉(zhuǎn)換及變溫發(fā)光性質(zhì)的研究[D];東北師范大學(xué);2013年
3 白雪蕊;基于MgH_2水解反應(yīng)的氫源系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2013年
4 時(shí)艷;微藻快速催化裂解制取生物油[D];青島科技大學(xué);2013年
5 趙磊強(qiáng);生物油高效氣化制取富氫合成氣的研究[D];華北電力大學(xué);2014年
6 姜曦;Ho~(3+),Yb~(3+)共摻雜12CaO·7Al_2O_3上轉(zhuǎn)換發(fā)光特性及其與籠中陰離子的依賴(lài)關(guān)系研究[D];東北師范大學(xué);2014年
7 張文華;生物質(zhì)焦油在半焦基催化劑下水蒸氣重整的研究[D];大連理工大學(xué);2014年
,本文編號(hào):1571995
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1571995.html