靜電紡絲法制備低維納米結(jié)構(gòu)及其催化產(chǎn)氫方面的研究
發(fā)布時(shí)間:2018-03-03 01:21
本文選題:靜電紡絲 切入點(diǎn):NiO 出處:《中國科學(xué)技術(shù)大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著納米科技的發(fā)展,一維納米結(jié)構(gòu)由于其獨(dú)特的光電性能而被應(yīng)用于多個(gè)領(lǐng)域,而其中,靜電紡絲技術(shù)由于其裝置簡(jiǎn)單,造價(jià)便宜,可變性強(qiáng),可操控性強(qiáng)等優(yōu)點(diǎn),成為制備一維納米結(jié)構(gòu)的常用方法。另一方面,化石燃料不可再生及其所帶來的環(huán)境污染,使得清潔能源成為當(dāng)今社會(huì)的研究熱點(diǎn)。而催化水產(chǎn)氫,特別是光催化水產(chǎn)氫,由于其產(chǎn)物無污染、成本低、可再生的優(yōu)點(diǎn)更是成為當(dāng)今科研界研究的重中之重。半導(dǎo)體催化劑由于其可以通過改變成分組成或者表面形態(tài)而提高其性能以及其量多易得,因此在潔凈能源和低投入能換材料中具有重要位置。而靜電紡絲制備的一維材料具有比表面積高、微結(jié)構(gòu)可調(diào)等優(yōu)點(diǎn),可以良好的應(yīng)用于催化制氫領(lǐng)域。目前,靜電紡絲技術(shù)與催化制氫領(lǐng)域的結(jié)合已經(jīng)引起了眾多科學(xué)家的關(guān)注。 本論文主要利用靜電紡絲技術(shù)制備金屬氧化物半導(dǎo)體納米線,并圍繞其形貌、結(jié)構(gòu)、催化性能等方面進(jìn)行了一系列研究工作,通過半導(dǎo)體催化劑的表面結(jié)構(gòu)和比表面積對(duì)產(chǎn)氫性能的影響,探索靜電紡絲技術(shù)在催化產(chǎn)氫方面的應(yīng)用方向。本論文取得的主要成果如下: (1)發(fā)現(xiàn)了樣品表面暴露的高能面原子密度對(duì)催化活性的影響。靜電紡絲技術(shù)制備的NiO納米線,經(jīng)過非平衡態(tài)煅燒,樣品顆粒表面具有大量的表面臺(tái)階,這使得高能面能夠保留下來,并最終導(dǎo)致其暴露的高指數(shù)面原子密度較大。并且,樣品的催化特性與其暴露的高指數(shù)面原子密度成正相關(guān)關(guān)系,當(dāng)樣品量為NiO30%,負(fù)載量為2wt%時(shí),暴露的高指數(shù)面原子密度最大(2.92×107/cm)電催化和光催化性能(150mmol·g-1·h-1)也最好。這種結(jié)合靜電紡絲技術(shù)和熱處理,調(diào)節(jié)樣品表面結(jié)構(gòu),提高催化活性的方法,為以后低成本半導(dǎo)體催化制氫的發(fā)展提供了新的方向。 (2)結(jié)合靜電紡絲技術(shù)和水熱法,變二維MoS2納米片為一維MoS2/Ti02復(fù)合納米線,其比表面積得到提高,光催化活性大大增加。先通過靜電紡絲技術(shù)制備Ti02納米線,再通過水熱法制備MoS2/TiO2復(fù)合結(jié)構(gòu),結(jié)果發(fā)現(xiàn),Ti02納米線周圍包裹的MoS2納米片較少(5-7層),提高了MoS2的比表面積(66m2/g)和光催化活性(16.7mmol·h-1·g-1)。這種方法為克服其他催化劑活性不高的難題提供了新的思路。
[Abstract]:With the development of nanotechnology, one-dimensional nanostructures have been used in many fields because of their unique photoelectric properties. Among them, electrostatic spinning technology has the advantages of simple device, cheap cost, strong variability, strong maneuverability and so on. On the other hand, the non-renewable fossil fuels and their environmental pollution have made clean energy a hot spot in our society. Catalytic aquatic hydrogen, especially photocatalytic hydrogen, has become a common method of preparing one-dimensional nanostructures. Because its products are pollution-free and low-cost, the advantages of being renewable have become a top priority in the field of scientific research today. Semiconductor catalysts can improve their performance and quantity by changing their composition or surface morphology. Therefore, it has an important position in clean energy and low input energy exchange materials. The one-dimensional materials prepared by electrostatic spinning have the advantages of high specific surface area and adjustable microstructure, so they can be used in the field of catalytic hydrogen production. The combination of electrostatic spinning and catalytic hydrogen production has attracted the attention of many scientists. In this paper, metal oxide semiconductor nanowires were prepared by electrospinning technology, and a series of research work was carried out around their morphology, structure, catalytic performance and so on. Through the influence of surface structure and specific surface area of semiconductor catalyst on hydrogen production performance, the application direction of electrostatic spinning technology in catalytic hydrogen production is explored. The main achievements in this paper are as follows:. (1) the influence of high energy surface atomic density on the catalytic activity was found. The surface of NiO nanowires prepared by electrostatic spinning has a large number of surface steps after non-equilibrium calcination. This allows the high energy surface to be preserved, and eventually leads to a higher atomic density at the high exponential surface. Furthermore, the catalytic properties of the sample are positively correlated with the atomic density of the exposed high exponential surface, when the amount of the sample is NiO30 and the loading amount is 2 wt%, The electrocatalytic and photocatalytic properties of the exposed high exponent surface atom density of 2.92 脳 10 ~ 7 / cm ~ (-1) are also the best. This method combines electrostatic spinning and heat treatment to adjust the surface structure of the sample and improve its catalytic activity. It provides a new direction for the development of low cost semiconductor catalytic hydrogen production. In combination with electrostatic spinning and hydrothermal method, the specific surface area and photocatalytic activity of two-dimensional MoS2 nanowires were improved, and the photocatalytic activity of Ti02 nanowires was greatly increased. The MoS2/TiO2 composite structure was prepared by hydrothermal method. The results show that there are less 5-7 layers of MoS2 nanoparticles wrapped around Ti02 nanowires, which improves the specific surface area of MoS2 (66 m2 / g) and photocatalytic activity of 16.7 mmol 路h -1 路g -1 路g -1. This method provides a new way to overcome the difficulty of other catalysts with low activity.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ116.2;O643.36
【參考文獻(xiàn)】
相關(guān)博士學(xué)位論文 前2條
1 張軍;復(fù)合金屬硫化物光催化劑的制備及其可見光活性研究[D];武漢理工大學(xué);2010年
2 王玉曉;可見光下光催化分解水制取氫氣的研究[D];天津大學(xué);2009年
,本文編號(hào):1558949
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1558949.html
最近更新
教材專著