等離子體輔助機(jī)械力活化低溫合成AlN的研究
本文關(guān)鍵詞: Al N DBDP輔助球磨 固態(tài)氮源 低溫合成 出處:《集美大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:氮化鋁(Al N)是一種新型的應(yīng)用廣泛的功能陶瓷材料,具有良好的熱傳導(dǎo)性能、電絕緣性及與硅接近的熱膨脹系數(shù)等優(yōu)良性質(zhì)。隨著船舶逐漸向智能化、自動化發(fā)展,Al N在船舶與海洋工程領(lǐng)域的應(yīng)用越來越廣泛。本文利用等離子體輔助機(jī)械力活化法在室溫下合成了Al N。與常規(guī)的碳熱還原法和直接氮化法相比,采用固態(tài)有機(jī)氮源通過DBDP輔助球磨合成Al N的溫度顯著降低。本文對三種體系進(jìn)行普通球磨和DBDP(介質(zhì)阻擋放電等離子體)輔助球磨的研究,主要包括:(1)研究了以Al+NH3混合物為原料的氣-固反應(yīng)體系,發(fā)現(xiàn)NH3雖然化學(xué)性質(zhì)比N2更活潑,但是由于氣態(tài)氮源存在摩爾量小、與反應(yīng)物接觸不充分等局限性,導(dǎo)致無法在室溫下通過DBDP輔助球磨直接制備出Al N。但DBD等離子體產(chǎn)生的高能粒子能有效細(xì)化粉體。(2)研究了以N2為氮源,Al+Li OH?H2O混合物為原料的氣-固反應(yīng)體系,發(fā)現(xiàn)室溫下兩種球磨方式只在球磨1 h時(shí),獲得極少量的Al N粉末。之后隨球磨時(shí)間的增加,Al N衍射峰逐漸減弱并消失,這是因?yàn)榍蚰ス迌?nèi)的Al N隨球磨的進(jìn)行發(fā)生了水解反應(yīng)。(3)研究了以Al+DAMN混合物為原料的固-固反應(yīng)體系,發(fā)現(xiàn)隨著球磨進(jìn)行,成功的在室溫下直接通過DBDP輔助球磨制備出Al N。得到的Al N轉(zhuǎn)化率隨時(shí)間的增加而逐漸升高,且DBDP輔助球磨的轉(zhuǎn)化率為高于普通球磨。表明與單純的機(jī)械能作用相比,等離子體與機(jī)械能的協(xié)同作用更有利于促進(jìn)反應(yīng)進(jìn)行。通過電學(xué)診斷發(fā)現(xiàn),在等離子體輔助球磨過程中,得到了密集穩(wěn)定的強(qiáng)脈沖放電,導(dǎo)致球磨時(shí)能夠產(chǎn)生大量的高能粒子。對反應(yīng)過程中各物質(zhì)官能團(tuán)的變化進(jìn)行紅外光譜分析,發(fā)現(xiàn)Al+DAMN能夠合成Al N的主要原因是等離子體產(chǎn)生的高能粒子轟擊粉體,使粉體局部產(chǎn)生“電熱爆”效應(yīng),促進(jìn)不穩(wěn)定的DAMN逐漸失去腈基和胺基,這些游離的含氮基團(tuán)與Al發(fā)生反應(yīng),合成Al N。對粉體進(jìn)行熱動力學(xué)分析,發(fā)現(xiàn)DBD產(chǎn)生的高能粒子具有高的熱效應(yīng)、動能及表面濺射和活化作用。能顯著提高粉體的活性,降低反應(yīng)活化能,從而在室溫下直接制備出Al N。
[Abstract]:Aluminum nitride (AlN) is a new and widely used functional ceramic material with good thermal conductivity, electrical insulation and thermal expansion coefficient close to silicon. In this paper, the plasma assisted mechanical activation method is used to synthesize Al N at room temperature. Compared with the conventional carbothermal reduction method and direct nitriding method, Al N is synthesized at room temperature. The temperature of DBDP assisted ball milling for the synthesis of Al N from solid organic nitrogen sources has been significantly reduced. In this paper, the general ball milling and DBDP (dielectric barrier discharge plasma) assisted ball milling of three systems have been studied. The gas-solid reaction system using Al NH3 mixture as raw material was studied. It was found that NH3 was more active than N2 in chemical properties, but it was found that because of the small molar amount of gaseous nitrogen source and insufficient contact with reactants, As a result, Al N can not be directly prepared by DBDP assisted ball milling at room temperature, but the high energy particles produced by DBD plasma can effectively refine the powder. In the gas-solid reaction system with H _ 2O mixture as raw material, it was found that only a small amount of Al _ N powder was obtained at room temperature when only one hour of ball milling was used, and then the diffraction peak of Al _ N gradually decreased and disappeared with the increase of ball milling time. This is because the hydrolysis reaction of Al N in the ball mill tank occurred with the ball milling. The solid solid reaction system using Al DAMN mixture as raw material was studied, and it was found that with the ball milling process, AlN was successfully prepared by DBDP assisted ball milling at room temperature. The conversion rate of Al N increased with time, and the conversion rate of DBDP assisted ball mill was higher than that of ordinary ball mill. It was shown that the conversion rate of DBDP assisted ball mill was higher than that of ordinary ball mill. The synergetic effect of plasma and mechanical energy is more favorable to promote the reaction. Through electrical diagnosis, it is found that in the plasma assisted ball milling process, dense and stable strong pulse discharge is obtained. A large number of high energy particles can be produced during ball milling. The changes of functional groups of various substances in the reaction process are analyzed by infrared spectroscopy. It is found that the main reason for the synthesis of Al N by Al DAMN is the bombardment of powder by high energy particles produced by plasma. The local "electrothermal explosion" effect of the powder was induced, and the unstable DAMN gradually lost the nitrile group and the amine group. These free nitrogen-containing groups reacted with Al to synthesize Al N. Thermokinetic analysis of the powder was carried out. It is found that the high energy particles produced by DBD have high thermal effect, kinetic energy, surface sputtering and activation, which can significantly improve the activity of the powder and decrease the activation energy of the reaction, thus the Al N can be prepared directly at room temperature.
【學(xué)位授予單位】:集美大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TQ174.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 閔盤榮;;低溫合成粉煤灰水泥建筑性質(zhì)的研究[J];南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);1980年01期
2 朱從善,侯立松,單躍進(jìn),王建中;Na_2O-B_2O_3-SiO_2玻璃的低溫合成[J];硅酸鹽通報(bào);1983年03期
3 馬廣成;丁世文;;無機(jī)化合物的低溫合成[J];河北化工;1993年02期
4 王詩語;趙德明;姜恒;蘇婷婷;;低溫合成超細(xì)鈮酸鋰粉末[J];中國陶瓷;2011年05期
5 Laurel M.sheppard ,李炳生;陶瓷的低溫合成——制造最新材料的低溫方法[J];兵器材料科學(xué)與工程;1987年11期
6 羅;;黃坤耀;鄭臣諫;;碳化釩的低溫合成[摘][J];廣州化工;1987年03期
7 劉小明;王裕光;;凝膠法低溫合成Al_2O_3-B_2O_3-SiO_3玻璃的特性[J];建材工業(yè)信息;1984年06期
8 張清;李進(jìn);;鄭重申明[J];石油化工應(yīng)用;2009年06期
9 黃占杰;;凝膠法低溫合成氧化物玻璃[J];光學(xué)工程;1981年03期
10 陸德金;;流化床煅燒低溫合成粉煤灰水泥熟料的研究[J];南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);1987年04期
相關(guān)會議論文 前8條
1 劉素文;王彥敏;呂孟凱;任民;崔曉鵬;潘杰;;ZrTiO_4納米晶的低溫合成及其吸附特性[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集Ⅱ[C];2004年
2 楊海波;林營;;KNbO_3粉體的低溫合成研究[A];中國硅酸鹽學(xué)會陶瓷分會2010年學(xué)術(shù)年會論文集(二)[C];2010年
3 朱紅梅;喬柯;劉欣梅;楊向東;趙國鋒;閻子峰;;SAPO-11分子篩的低溫合成與表征[A];第十一屆全國青年催化學(xué)術(shù)會議論文集(上)[C];2007年
4 沈強(qiáng);李凝芳;高金媛;李惠嫻;;硅質(zhì)煤矸石的結(jié)構(gòu)特點(diǎn)與低溫合成β-SiC的關(guān)系[A];94'全國結(jié)構(gòu)陶瓷、功能陶瓷、金屬/陶瓷封接學(xué)術(shù)會議論文集[C];1994年
5 邱發(fā)貴;張梅;李全明;;超細(xì)YAG納米粉體的溶膠—凝膠燃燒法低溫合成[A];增強(qiáng)自主創(chuàng)新能力 促進(jìn)吉林經(jīng)濟(jì)發(fā)展——啟明杯·吉林省第四屆科學(xué)技術(shù)學(xué)術(shù)年會論文集(下冊)[C];2006年
6 苗雙;章福祥;沈雯雯;皮勇;楊雅莉;關(guān)乃佳;;金屬和非金屬共改性M-TiO_(2-x)N_x/SBA-15可見光催化劑的低溫合成及其光催化性能研究[A];中國化學(xué)會第26屆學(xué)術(shù)年會環(huán)境化學(xué)分會場論文集[C];2008年
7 殷澍;王金淑;佐藤次雄;;二氧化鈦納米粒子的低溫合成及可見光催化性能[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集Ⅱ[C];2004年
8 肖軍;洪廣言;;溶膠—凝膠法制備LaMO_3超微粉末(M=Cr、Mn、Fe、Co、Ni)[A];首屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];1992年
相關(guān)重要報(bào)紙文章 前1條
1 ;MgB_(2)超導(dǎo)體低溫合成成功[N];中國有色金屬報(bào);2002年
相關(guān)博士學(xué)位論文 前1條
1 陳加福;超臨界CO_2-堿金屬體系碳化硅的低溫合成與表征[D];中國科學(xué)技術(shù)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前5條
1 楊卓立;等離子體輔助機(jī)械力活化低溫合成AlN的研究[D];集美大學(xué);2015年
2 周立娟;鉻錫紅色料的低溫合成及其光學(xué)性能的研究[D];武漢理工大學(xué);2002年
3 楊鳳玲;低溫合成煤矸石水泥工藝參數(shù)及形成機(jī)理研究[D];南京工業(yè)大學(xué);2005年
4 周艷華;非水解溶膠—凝膠法低溫合成硅酸鋯粉體的研究[D];景德鎮(zhèn)陶瓷學(xué)院;2008年
5 馮艷春;前驅(qū)物法低溫合成六方氮化硼[D];大連理工大學(xué);2012年
,本文編號:1554933
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1554933.html