天然石膏改性及填充樹脂的實(shí)驗(yàn)研究
本文關(guān)鍵詞: 天然二水石膏 硬脂酸 表面改性 聚苯乙烯(PS) 聚甲基丙烯酸甲酯(PMMA) 出處:《武漢工程大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:天然石膏是我國(guó)儲(chǔ)量大且分布廣泛的優(yōu)勢(shì)非金屬礦產(chǎn)之一,廣泛應(yīng)用于塑料、橡膠、涂料和紙張等行業(yè),但天然石膏作為填料使用時(shí),存在與高分子相容性不足的缺點(diǎn),需要通過表面改性改善天然石膏在有機(jī)高分子基材的分散性。本課題針對(duì)硬脂酸表面改性天然二水石膏(GY)及改性天然二水石膏(MGY)的應(yīng)用展開了相關(guān)的實(shí)驗(yàn)研究。采用活化指數(shù)確定硬脂酸改性GY的最佳體系,應(yīng)用傅立葉紅外光譜(FT-IR)、掃描電鏡(SEM)、X射線衍射(XRD)、接觸角、相容性分析等多種手段對(duì)MGY進(jìn)行表征。并通過溶液共混法,以MGY為填料,聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)為基質(zhì),制備MGY-PS、MGY-PMMA復(fù)合材料。針對(duì)MGY-PS復(fù)合材料,利用SEM考察了MGY在PS中的分散性及其對(duì)PS基材的影響,并通過機(jī)械性能、熱穩(wěn)定性的測(cè)量綜合評(píng)價(jià)其物理性能。而對(duì)于MGY-PMMA復(fù)合材料主要進(jìn)行力學(xué)性能、熱穩(wěn)定性能及透光率的測(cè)定。得到的主要結(jié)論如下:1.使用硬脂酸改性GY時(shí),最佳的改性體系為改性劑用量6%,改性溫度60 oC,改性時(shí)間40 min,改性pH 7。該情況下得到的MGY,活化指數(shù)達(dá)到100%,為最佳。2.硬脂酸改性GY粉體時(shí),硬脂酸根通過取代GY顆粒表面羥基,破壞GY顆粒團(tuán)聚體的表面層穩(wěn)定性,從而達(dá)到改性的效果。而經(jīng)過改性后得到的MGY,其熱穩(wěn)定性提高,表面接觸角由35.64°增加到87.47°,與液體石蠟有較好的相容性。3.在PS高分子體系中,復(fù)合材料的阻燃性能會(huì)因MGY粉體的添加而得到較大程度的提高,在MGY的填充量為20%時(shí),能將易燃的PS高分子材料轉(zhuǎn)變?yōu)榭扇疾牧?在MGY的填充量為50%時(shí),會(huì)得到難燃的MGY-PS復(fù)合材料;在PS高分子體系中,填料的添加,使得復(fù)合材料的機(jī)械性較純PS有較大程度的提高。當(dāng)填料與樹脂的質(zhì)量比為1:5時(shí),GY-PS復(fù)合材料的拉伸強(qiáng)度較純PS體系得到4%的增加量,而斷裂伸長(zhǎng)率得到8%的增加;而同等填充率的情況下,MGY對(duì)復(fù)合材料機(jī)械性能的促進(jìn)作用更為明顯,MGY-PS復(fù)合體系的拉伸強(qiáng)度較純PS體系增加6%,斷裂伸長(zhǎng)率為純PS體系的110%。4.在PMMA高分子體系中,添加MGY粉體能在一定程度上提高PMMA材料的熱穩(wěn)定性,但MGY的添加量會(huì)嚴(yán)重影響復(fù)合材料的透光率,在填充量在1%下時(shí),復(fù)合材料的透光率能保持在80%以上;在PMMA高分子體系中,MGY對(duì)PMMA機(jī)械強(qiáng)度的促進(jìn)作用較為明顯。當(dāng)MGY的填充量為2%時(shí),MGY-PMMA復(fù)合體系的拉伸強(qiáng)度較純PMMA體系增加28%,斷裂伸長(zhǎng)率增大至純PMMA體系的118%。
[Abstract]:Natural gypsum is one of the most abundant and widely distributed non-metallic minerals in China. It is widely used in plastics, rubber, coatings and paper industries. However, when used as filler, natural gypsum has the disadvantage of insufficient compatibility with polymer. It is necessary to improve the dispersion of natural gypsum in organic polymer substrate by surface modification. In this paper, the application of stearic acid surface modified natural gypsum (GY) and modified natural gypsum dihydrate (MGY) were studied. The optimum system of stearic acid modified GY was determined by activation index. The MGY was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), contact angle, compatibility analysis and so on. The MGY was characterized by solution blending, using MGY as the filler, polystyrene (PS) and poly (methyl methacrylate) (PMMA) as the matrix. MGY-PSN MGY-PMMA composites were prepared. For MGY-PS composites, the dispersion of MGY in PS and its influence on PS substrate were investigated by SEM. The mechanical properties, thermal stability and transmittance of MGY-PMMA composites were measured. The main conclusions are as follows: 1.When stearic acid was used to modify GY, The optimum modification system is the dosage of modifier 6, modification temperature 60 OC, modification time 40 min, modification pH 7. The activation index of MGY obtained under this condition is 100. 2. When stearic acid modifies GY powder, stearic acid radical replaces the surface hydroxyl of GY particles. The stability of the surface layer of the agglomerates of GY particles was destroyed and the effect of modification was achieved. However, the thermal stability of the modified MGY was improved, the contact angle of the surface was increased from 35.64 擄to 87.47 擄, and the surface contact angle was increased from 35.64 擄to 87.47 擄, which had good compatibility with liquid paraffin. The flame retardancy of the composites can be greatly improved by the addition of MGY powder. When the content of MGY is 20, the flammable PS polymer can be changed into combustible material, and when the content of MGY is 50, In PS polymer system, the addition of filler, When the mass ratio of filler to resin is 1: 5, the tensile strength of GY-PS composite is 4% higher than that of pure PS system, and the elongation at break is 8%. The tensile strength of MGY-PS composite system is 6% higher than that of pure PS system, and the elongation at break is 110. 4% of pure PS system. In PMMA polymer system, the tensile strength of MGY-PS composite system is more obvious than that of pure PS system, and the tensile strength of MGY-PS composite system is more obvious than that of pure PS system, and the elongation at break is 110. 4% of pure PS system. The addition of MGY powder can improve the thermal stability of PMMA material to some extent, but the content of MGY will seriously affect the transmittance of the composite. When the content of MGY is 1%, the transmittance of the composite can be kept above 80%. The effect of MGY on the mechanical strength of PMMA is obvious in PMMA polymer system. When the filling amount of MGY is 2, the tensile strength of MGY-PMMA composite system increases by 28% and the elongation at break increases to 118% of pure PMMA system.
【學(xué)位授予單位】:武漢工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ177.37
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;工程塑料超韌改性技術(shù)[J];現(xiàn)代機(jī)械;2002年01期
2 呂雪峰;鄭文新;王樂;;羊毛改性技術(shù)的研究進(jìn)展[J];紡織科技進(jìn)展;2009年02期
3 余雯;;系列減震材料[J];橡膠科技市場(chǎng);2010年03期
4 高繁華,張永明,高雄厚;沸石的改性技術(shù)[J];工業(yè)催化;1998年02期
5 懷寶東;張東杰;錢麗麗;王穎;李佩然;;大豆分離蛋白改性技術(shù)的研究與發(fā)展趨勢(shì)[J];中國(guó)釀造;2014年06期
6 呂雪峰;鄭文新;王樂;;羊毛改性技術(shù)的研究進(jìn)展[J];上海毛麻科技;2009年02期
7 羅學(xué)剛,陶楊,廖俊和,周健,楊娟;植物(秸桿)纖維助膨化改性技術(shù)研究與應(yīng)用進(jìn)展[J];纖維素科學(xué)與技術(shù);2003年04期
8 ;本刊將連載“彈性體的改性技術(shù)”講座[J];合成橡膠工業(yè);1990年03期
9 謝海安,戴宏程;超微細(xì)二氧化硅的改性研究及其應(yīng)用[J];湖北化工;2001年05期
10 陳錦;;硝銨改性技術(shù)——硝銨鋅生產(chǎn)技術(shù)專利[J];瀘天化科技;2004年03期
相關(guān)會(huì)議論文 前3條
1 方克明;王國(guó)承;;鋼中的夾雜物研究從表征到改性[A];2006年全國(guó)冶金物理化學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
2 李明;李玉芳;;聚碳酸酯的生產(chǎn)現(xiàn)狀及改性技術(shù)進(jìn)展[A];2005塑料助劑生產(chǎn)與應(yīng)用技術(shù)信息交流會(huì)論文集[C];2005年
3 李桂林;;環(huán)氧樹脂應(yīng)用的復(fù)配改性技術(shù)[A];第十次全國(guó)環(huán)氧樹脂應(yīng)用技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2003年
相關(guān)重要報(bào)紙文章 前4條
1 國(guó)家知識(shí)產(chǎn)權(quán)局專利局材料發(fā)明審查部涂裝工程處 王華;聚四氟乙烯改性技術(shù)專利申請(qǐng)分析(二)[N];中國(guó)知識(shí)產(chǎn)權(quán)報(bào);2011年
2 胡焱清 李子繁 孫紅旗;聚乙烯醇的改性及應(yīng)用[N];中國(guó)包裝報(bào);2010年
3 本報(bào)記者 周開斌;走在學(xué)科前沿的人[N];中國(guó)紡織報(bào);2002年
4 鄭愷;尼龍:應(yīng)用拓展拉動(dòng)產(chǎn)需強(qiáng)增長(zhǎng)[N];中國(guó)化工報(bào);2007年
相關(guān)博士學(xué)位論文 前3條
1 詹國(guó)柱;改性氰酸酯樹脂及其復(fù)合體系的研究[D];復(fù)旦大學(xué);2009年
2 曾毅;Zr-Ti合金反應(yīng)熔滲改性C/C復(fù)合材料的研究[D];中南大學(xué);2013年
3 段華波;基于加熱改性處理的廢線路板資源化過程及作用機(jī)制研究[D];清華大學(xué);2010年
,本文編號(hào):1534611
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1534611.html