基于分布式FBG傳感陣列的微生物燃料電池陽極室內(nèi)溫度場分布實時測量系統(tǒng)研究
發(fā)布時間:2018-02-11 08:54
本文關(guān)鍵詞: 光纖布拉格光柵 傳感陣列 微生物燃料電池 溫度場 出處:《重慶理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來,隨著工業(yè)化的大力持續(xù)發(fā)展,人們對于能源消耗以及環(huán)境污染問題有了更多的關(guān)注。微生物燃料電池(M F C)因其在處理污水的同時還能產(chǎn)電的特性成為研究熱點,M F C的這種特性使其在污水處理和產(chǎn)電產(chǎn)能中可能產(chǎn)生巨大的經(jīng)濟效益,目前M F C還不能直接投入到污水處理廠中使用主要是因為其產(chǎn)電效率低下,對污水中有機物的消耗速度較慢。光纖光柵傳感器(F B G)因其體積小、精度高、耐腐蝕、實時性好等優(yōu)點在生化領(lǐng)域中得到大量應(yīng)用。M F C內(nèi)部溫度場分布是影響其產(chǎn)電效率的重要因素,目前對于測量M F C內(nèi)部溫度場分布的研究也比較少,若能對M F C內(nèi)部溫度場分布進行實時測量,對于研究如何提高M F C產(chǎn)電率將會是有力的幫助,并且還能進一步推動光纖光柵傳感技術(shù)在生化領(lǐng)域的應(yīng)用。本文主要提出基于F B G傳感陣列實時測量M F C陽極室內(nèi)部溫度場分布情況,首先深入研究了M F C的制作原理及工作原理,光纖布拉格光柵(F B G)溫度傳感原理及復(fù)用技術(shù),在這些理論的基礎(chǔ)上,獲得了M F C及F B G傳感陣列的設(shè)計方案,根據(jù)設(shè)計方案制作出了實驗用的M F C和F B G傳感陣列,最后將制作的F B G傳感陣列封裝埋入M F C內(nèi)部陽極室,通過搭建測量系統(tǒng)對M F C陽極室溫度場分布進行實時測量。本次課題的主要研究內(nèi)容有以下幾點:(1)研究M F C的制作材料及工作原理,設(shè)計出制作M F C的方案,根據(jù)方案制作能夠穩(wěn)定運行的M F C(2)深入研究F B G溫度傳感原理及F B G復(fù)用技術(shù),制作出測量溫度場所需F B G傳感陣列,通過蒸餾水標定實驗檢測F B G傳感單元的溫度特性以及傳感單元之間是否存在波長漂移重疊。(3)搭建M F C陽極室溫度場實時測量系統(tǒng),通過該系統(tǒng)能夠做到對M F C內(nèi)部陽極室溫度場實時監(jiān)測,通過解調(diào)儀能夠得到各F B G傳感單元的實時波長,根據(jù)溫度傳感原理可計算出對應(yīng)溫度。(4)對M FC成長期、穩(wěn)定期、衰老期的溫度場數(shù)據(jù)進行分析,通過溫度場分布情況推斷出微生物在陽極室的分布情況,對于提高M F C產(chǎn)電效率的研究提供有力的支持。
[Abstract]:In recent years, with the vigorous and sustained development of industrialization, More attention has been paid to energy consumption and environmental pollution. Microbial fuel cell (MFC) has become a hot topic because of its ability to produce electricity while treating sewage. Great economic benefits can be generated in processing and power production capacity, At present, the main reason why M F C can not be directly used in sewage treatment plant is because of its low power generation efficiency and slow consumption of organic matter in sewage. Fiber Bragg grating sensor FB G) has the advantages of small size, high precision and corrosion resistance. The advantages of real-time performance are widely used in biochemistry field. The distribution of temperature field in MF C is an important factor affecting the efficiency of power generation. At present, there are few researches on measuring temperature field distribution in MF C. If the temperature field distribution in MF C can be measured in real time, it will be helpful to study how to improve the power generation rate of MF C. It can further promote the application of fiber Bragg grating sensing technology in the field of biochemistry. In this paper, a real-time measurement of temperature field distribution in the MFC anode chamber based on FBG sensor array is presented. Firstly, the fabrication principle and working principle of MF C, the temperature sensing principle and multiplexing technology of fiber Bragg grating (FBG) are studied. Based on these theories, the design scheme of MF C and F B G sensor array is obtained. According to the design scheme, the experimental MF C and F B G sensor arrays are fabricated. Finally, the fabricated F B G sensor arrays are encapsulated into the internal anode chamber of M F C. The temperature field distribution of M F C anode chamber is measured in real time by setting up a measuring system. The main research contents of this paper are as follows: 1) the fabrication material and working principle of M F C are studied, and the scheme of making M F C is designed. The principle of F-B G temperature sensing and the technology of F B G multiplexing are deeply studied according to the scheme, which can run stably. The F-B G sensor array is made for temperature measurement. The temperature characteristics of the FBG sensor unit and whether there is a wavelength shift overlap between the sensing units are tested by the distilled water calibration experiment. The real-time temperature field measurement system of the M F C anode chamber is built. Through this system, the temperature field of the anode chamber inside the MFC can be monitored in real time, and the real-time wavelength of each FBG sensor unit can be obtained by demodulation instrument. According to the principle of temperature sensing, the corresponding temperature can be calculated. The temperature field data of aging period were analyzed, and the distribution of microorganism in anode chamber was inferred from the distribution of temperature field, which provided a strong support for improving the efficiency of electricity production of M-F C.
【學(xué)位授予單位】:重慶理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TM911.45
【共引文獻】
相關(guān)期刊論文 前5條
1 胡遼林;章鵬博;華燈鑫;鞏鑫;;時分復(fù)用光纖光柵傳感陣列中DFB激光器的高精度溫控設(shè)計[J];傳感技術(shù)學(xué)報;2012年07期
2 莫禾勝;陳勝權(quán);熊川;;基于FBG傳感器多波長解調(diào)檢測設(shè)計[J];光通信技術(shù);2008年02期
3 李麗;林玉池;付魯華;沈小燕;陳清海;;光纖光柵空分光復(fù)用傳感系統(tǒng)的研究[J];光學(xué)精密工程;2007年04期
4 李麗;何宏;林玉池;;壓電陶瓷在光纖光柵傳感解調(diào)中的應(yīng)用[J];壓電與聲光;2010年06期
5 祁耀斌;吳敢鋒;王漢熙;;光纖布拉格光柵傳感復(fù)用模式發(fā)展方向[J];中南大學(xué)學(xué)報(自然科學(xué)版);2012年08期
,本文編號:1502666
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1502666.html
最近更新
教材專著