基于壓電驅(qū)動(dòng)的高頻振動(dòng)自循環(huán)式微流體反應(yīng)器設(shè)計(jì)與實(shí)驗(yàn)研究
本文關(guān)鍵詞: 微流體反應(yīng)器 壓電微泵 高頻振動(dòng) 自循環(huán) 銀納米粒子 可控合成 出處:《吉林大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:微流體反應(yīng)器因具試劑消耗少、反應(yīng)效率高、安全可控等優(yōu)點(diǎn),在化工領(lǐng)域內(nèi)有著巨大優(yōu)勢(shì)。目前,對(duì)微流體反應(yīng)器的研究多數(shù)以溶液間的快速混合以及精確配比為主,而對(duì)需要一定空間及時(shí)間的溶液反應(yīng)研究較少。本文以壓電驅(qū)動(dòng)技術(shù)為基礎(chǔ)、以壓電微泵制作工藝為依托,提出了一種高頻振動(dòng)自循環(huán)式微流體反應(yīng)器,它一方面通過壓電微泵的主動(dòng)自循環(huán)回流,促使溶液均勻混合反應(yīng),另一方面,利用振動(dòng)基底的高頻振動(dòng)均衡反應(yīng)條件,抑制微粒間的團(tuán)聚。它是一種主動(dòng)性更強(qiáng)、過程可控的新型微流體反應(yīng)器,適用于反應(yīng)過程復(fù)雜、反應(yīng)時(shí)間長(zhǎng)、需要主動(dòng)攪拌的化學(xué)反應(yīng),尤其適用于貴金屬納米粒子的液相合成反應(yīng)。具體研究?jī)?nèi)容如下:通過建立壓電振子的理論彎曲模型,得出影響壓電振子最大撓度的參數(shù);利用ANSYS軟件建立壓電振子的分析模型,對(duì)其進(jìn)行模態(tài)分析及諧響應(yīng)分析,確定一階振型為純彎曲振型,并且當(dāng)激勵(lì)頻率為壓電振子的諧振頻率時(shí),壓電振子響應(yīng)位移最大,最具驅(qū)動(dòng)能力。利用COMSOL軟件對(duì)混合池結(jié)構(gòu)進(jìn)行流體仿真分析,流動(dòng)特性表明在入口雷諾數(shù)較高時(shí),混合池中形成渦旋流動(dòng),混合以對(duì)流為主,渦旋越明顯,混合效果越好。通過仿真確定U形結(jié)構(gòu)為單出入分布的最佳結(jié)構(gòu)以及W/D=1/12為最佳結(jié)構(gòu)參數(shù),并基于U形結(jié)構(gòu)特點(diǎn)提出的多出入口分布的混合池結(jié)構(gòu),其性能要優(yōu)于單出入口分布的混合池結(jié)構(gòu);在混合池中間增加圓形或葉片形障礙物,并沒有起到加強(qiáng)混合的效果的作用。設(shè)計(jì)制作基于壓電驅(qū)動(dòng)的高頻振動(dòng)自循環(huán)式微流體反應(yīng)器,并進(jìn)行了關(guān)于壓電微泵、自循環(huán)回流、振動(dòng)基底等性能測(cè)試。測(cè)試結(jié)果表明:壓電微泵的輸出流量和輸出壓力,均隨著驅(qū)動(dòng)電壓的增大而近似線性增大。當(dāng)驅(qū)動(dòng)頻率在80~120Hz時(shí),壓電微泵的輸出流量和輸出壓力均處于較高水平;當(dāng)驅(qū)動(dòng)頻率在160~200Hz時(shí),壓電微泵輸出流量小,但頻率的波動(dòng)對(duì)流量的影響甚微。在自循環(huán)回流微泵頻率為100Hz條件下,隨著驅(qū)動(dòng)電壓增大,渦旋轉(zhuǎn)速越快,當(dāng)驅(qū)動(dòng)電壓為80V時(shí),渦旋轉(zhuǎn)速高達(dá)263r/min。在混合池注滿0.4ml水的情況下,振動(dòng)基底的諧振頻率為3.85kHz,并在此頻率下,振子的最大振幅隨著電壓增大而增大。當(dāng)驅(qū)動(dòng)電壓為100V時(shí),高頻振動(dòng)能夠振散開磁性陶瓷顆粒,當(dāng)驅(qū)動(dòng)電壓大于120V時(shí),高頻振動(dòng)會(huì)產(chǎn)生霧化現(xiàn)象。利用自制的微流體反應(yīng)器進(jìn)行硼氫化鈉還原硝酸銀合成銀納米粒子的實(shí)驗(yàn),驗(yàn)證其在貴金屬納米粒子合成等復(fù)雜化學(xué)反應(yīng)中的應(yīng)用優(yōu)勢(shì)。實(shí)驗(yàn)結(jié)果表明PVP作為一種保護(hù)分散劑,能夠有效地抑制銀納米粒子的團(tuán)聚。自循環(huán)回流對(duì)粒子的合成產(chǎn)生影響,隨著驅(qū)動(dòng)電壓的增大,渦旋轉(zhuǎn)速越快,反應(yīng)試劑混合越均勻,合成的納米粒子球形度越高、單分散性越好;高頻振動(dòng)對(duì)粒子的合成也產(chǎn)生影響,只有當(dāng)驅(qū)動(dòng)頻率為諧振頻率時(shí),振動(dòng)基底才能發(fā)揮高頻振動(dòng)的最佳效果,不僅能夠均衡粒子成長(zhǎng)環(huán)境,還能夠抑制納米粒子的團(tuán)聚,有利于合成球形度高、單分散性好、粒徑分布均勻的納米粒子。另外實(shí)驗(yàn)還分析硝酸銀與硼氫化鈉的濃度比對(duì)銀納米粒子的影響,當(dāng)兩者濃度比為1:4時(shí),合成的銀納米粒子濃度最高,平均粒徑大小為9.86nm,且尺寸分布范圍小、球形度高、單分散性好。
[Abstract]:A microfluidic reactor with less reagent consumption, high reaction efficiency, safe and controllable, has tremendous advantages in the field of chemical industry. At present, most studies on microfluidic reactor with fast mixed solution and accurate proportion, less on the solution reaction research requires a certain time and space. This is based on the piezoelectric driving technology, the piezoelectric micro pump manufacturing technology as the basis, put forward a kind of high frequency vibration self circulating micro fluid reactor, it through a piezoelectric micro pump automatic circulation enables the solution mixing reaction, on the other hand, the use of high frequency vibration vibration equilibrium reaction conditions of substrate. Inhibition of particles reunion. It is a more active, controllable new microfluidic reactor suitable for complex reaction process, reaction time, reaction to active mixing, especially suitable for precious metals Nanoparticles by liquid phase synthesis. The specific contents are as follows: the theory of bending model of the piezoelectric vibrator, the parameters affecting the maximum deflection of the piezoelectric vibrator; establish the analysis model of piezoelectric vibrator by using ANSYS software, modal analysis and harmonic response analysis on the determination of the first-order mode for pure bending mode, and when the excitation frequency is the resonance frequency of the piezoelectric vibrator, piezoelectric vibrator response displacement is the biggest, the most driving capability. The fluid simulation analysis of mixed pool structure by using COMSOL software, the flow characteristics show at the entrance Reynolds number is high, the formation of vortex flow mixing tank, mixing by convection, the vortex is more obvious, the mixing effect is better. Through simulation to determine the U structure for single entry structure and the distribution of the best W/D=1/12 for the best structural parameters, and based on the U structure characteristics of entrance distribution of mixed pool structure And its performance is superior to the single mixed pool entrance distribution structure; increase the circular or blade shape obstacles in the mixed pool middle, did little to enhance mixing effect. The high frequency vibration of the piezoelectric drive design based on self circulation microfluidic reactor, and carried on the piezoelectric micro pump, self circulation, vibration substrate performance test. The test results show that the piezoelectric micro pump output flow rate and pressure are increased with the increase of drive voltage linearly increases. When the driving frequency at 80~120Hz, piezoelectric micro pump output flow rate and pressure are at a high level; when the driving frequency in 160~200Hz piezoelectric micro pump, the output flow is small, but the frequency fluctuations have little effect on the flow. The self circulation micro pump frequency of 100Hz conditions, with the driving voltage increases, the vortex speed more quickly, when the driving voltage of 80V, high speed vortex 263r/min. 0.4ml was filled with water in the mixing tank under the condition that the resonance frequency of the vibrating substrate is 3.85kHz, and the frequency, the maximum amplitude of the oscillator increases as the voltage increases. When the driving voltage of 100V, high frequency vibration isolation can disperse magnetic ceramic particles, when the driving voltage is greater than 120V, high frequency vibration will produce atomization the phenomenon. The sodium borohydride reduction of silver nitrate synthesis of silver nanoparticles using self-made microfluidic reactor experiments to verify its application advantages in synthesis of noble metal nanoparticles and other complex chemical reaction. The experimental results show that PVP as a protective dispersing agent, can effectively inhibit the aggregation of silver nanoparticles. The self circulation reflux synthesis influence the particles, with the increase of drive voltage, scroll faster the speed, the reagent mixture is more uniform, the synthesis of spherical nanoparticles is higher, more good monodispersity; high frequency vibration The synthesis of particles was also affected, only when the driving frequency of the resonant frequency, vibration base to achieve the best results of the high frequency vibration, can not only balance the particle growth environment, but also can inhibit the agglomeration of nanoparticles, is conducive to the synthesis of high sphericity, monodisperse nanoparticles, uniform particle size distribution. Additionally analysis of the effect of silver nitrate and sodium borohydride concentration ratio of silver nanoparticles, when the concentration is 1:4, the synthesis of silver nanoparticles was the highest, the average particle size is 9.86nm, and the size distribution range of small, high sphericity, good monodispersity.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ052
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周衡;高頻振動(dòng)洗滌纖維的實(shí)驗(yàn)研究[J];遼寧高職學(xué)報(bào);2000年05期
2 鈴木弘 ,韓風(fēng)益;高頻振動(dòng)及其消除的相應(yīng)措施[J];組合機(jī)床通訊;1977年03期
3 羅樹臣;高頻振動(dòng)浸漬工藝技術(shù)[J];航天工藝;1984年03期
4 王曉林,,程靳,侯松玉;銅在超高頻振動(dòng)下的力學(xué)行為[J];鍛壓技術(shù);1995年04期
5 史可鵬;李洪吉;焦念懷;;高頻振動(dòng)清車機(jī)的研制及應(yīng)用[J];現(xiàn)代礦業(yè);2013年10期
6 周洪林;德瑞克高頻振動(dòng)細(xì)篩在礦物分級(jí)和脫水中的應(yīng)用[J];金屬礦山;2002年07期
7 王俊元,楊鵬程;旋流高頻振動(dòng)脫水篩[J];選煤技術(shù);2000年04期
8 周洪林;德瑞克高頻振動(dòng)細(xì)篩在礦物分級(jí)和脫水中的應(yīng)用實(shí)踐[J];礦山機(jī)械;2002年01期
9 趙平;常學(xué)勇;彭團(tuán)兒;洪鎮(zhèn)波;;高頻振動(dòng)細(xì)篩在鉬鎢選礦中的應(yīng)用[J];現(xiàn)代礦業(yè);2012年01期
10 劉樹英;劉杰;聞邦椿;;高頻振動(dòng)細(xì)篩機(jī)械設(shè)計(jì)與研究[J];金屬礦山;1986年06期
相關(guān)會(huì)議論文 前8條
1 王美嬌;陳錦全;陳志文;周德炎;;德瑞克高頻振動(dòng)細(xì)篩在長(zhǎng)坡選廠擴(kuò)能增效改造中的應(yīng)用[A];合作 發(fā)展 創(chuàng)新——2008(太原)首屆中西部十二省市自治區(qū)有色金屬工業(yè)發(fā)展論壇論文集[C];2008年
2 裴重華;孫中亮;艾亞菲;宋洪昌;;用高頻振動(dòng)磨制備超細(xì)硫磺粉[A];2001年海南全國(guó)粉體技術(shù)研討會(huì)論文集[C];2001年
3 鄧慶山;林增常;曹忠新;楊海波;;高頻振動(dòng)細(xì)篩在魯南礦業(yè)公司的應(yīng)用[A];冀晉瓊粵川魯六省金屬學(xué)會(huì)第十五屆礦山學(xué)術(shù)交流會(huì)論文集[C];2008年
4 吳解生;;高頻振動(dòng)對(duì)低濃紙漿流動(dòng)特性的影響及其應(yīng)用前景[A];中國(guó)造紙學(xué)會(huì)第九屆學(xué)術(shù)年會(huì)論文集[C];1999年
5 陳俊明;;GZX52-1007型高頻振動(dòng)細(xì)篩的研制及應(yīng)用[A];2010'中國(guó)礦業(yè)科技大會(huì)論文集[C];2010年
6 李金;劉偉;;HGZS疊層高頻振動(dòng)細(xì)篩應(yīng)用試驗(yàn)[A];魯冀晉瓊粵川遼七省金屬(冶金)學(xué)會(huì)第十九屆礦山學(xué)術(shù)交流會(huì)論文集(選礦技術(shù)卷)[C];2012年
7 趙明;胡春暉;鄭承美;;GYX31-1207高頻振動(dòng)細(xì)篩的研究與應(yīng)用[A];2004年全國(guó)選礦新技術(shù)及其發(fā)展方向?qū)W術(shù)研討與技術(shù)交流會(huì)論文集[C];2004年
8 周相榮;王強(qiáng);;減振元件高頻振動(dòng)特性的數(shù)值模擬[A];第八屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集摘要[C];2003年
相關(guān)碩士學(xué)位論文 前9條
1 仲崇凱;高頻振動(dòng)鋁合金塑性成形研究[D];山東大學(xué);2015年
2 黃志輝;某型高頻振動(dòng)細(xì)篩的設(shè)計(jì)與優(yōu)化[D];廈門理工學(xué)院;2016年
3 劉建鵬;高頻振動(dòng)打樁及其對(duì)鄰近環(huán)境的影響[D];福州大學(xué);2013年
4 唐春秀;基于壓電驅(qū)動(dòng)的高頻振動(dòng)自循環(huán)式微流體反應(yīng)器設(shè)計(jì)與實(shí)驗(yàn)研究[D];吉林大學(xué);2017年
5 劉詩堯;高頻振動(dòng)對(duì)AZ31鎂合金TIG焊接接頭組織和性能的影響[D];重慶大學(xué);2014年
6 魏楠;飽和地基高頻振動(dòng)特性的數(shù)值分析與試驗(yàn)研究[D];上海交通大學(xué);2008年
7 李濤濤;GMA高頻振動(dòng)特性的研究與分析[D];武漢理工大學(xué);2014年
8 陳躍;WT50型超高頻振動(dòng)物探鉆機(jī)設(shè)計(jì)[D];東北石油大學(xué);2014年
9 曾清平;新型高頻振動(dòng)閥的設(shè)計(jì)與研究[D];中北大學(xué);2013年
本文編號(hào):1483668
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1483668.html