結(jié)合遺傳算法的支持向量回歸及在鹽析分相法中的應(yīng)用
發(fā)布時間:2018-01-29 14:50
本文關(guān)鍵詞: 支持向量回歸 遺傳算法 參數(shù)優(yōu)化 鹽析分相法 出處:《河北工業(yè)大學》2015年碩士論文 論文類型:學位論文
【摘要】:在化工分離過程的有關(guān)研究中,鹽析分相法被公認為是一種有效的分離恒沸有機水溶液的方法,也是目前的一個研究熱點。但該方法的理論尚不成熟,在其工藝的研發(fā)過程中存在很多困難。對此,本文構(gòu)建了基于遺傳算法優(yōu)化參數(shù)的多維支持向量回歸(GA-MSVR)模型,將其應(yīng)用到鹽析分相法的相關(guān)預(yù)測中,主要完成了以下工作:首先,作為一個跨學科的研究課題,通過了解化工分離領(lǐng)域的基礎(chǔ)理論知識,重點研究了常用的恒沸有機水溶液的分離方法,針對鹽析分相法缺乏實驗數(shù)據(jù)的問題,采用計算機模擬求解的方法,對有機物-水-無機鹽體系液-液相平衡的典型問題進行了分析,進而提出了應(yīng)用多輸出支持向量回歸算法預(yù)測經(jīng)歷鹽析效應(yīng)之后有機物和水的含量。其次,研究了多維支持向量回歸算法(MSVR),采用了遺傳算法對MSVR的參數(shù)進行優(yōu)化處理,以實現(xiàn)參數(shù)的自動選取,避免了參數(shù)選擇的隨機性和主觀性,提出了GA-MSVR模型的構(gòu)造性算法,并且利用多維函數(shù)映射的模擬數(shù)據(jù)進行了相關(guān)的實驗設(shè)計和驗證工作。再次,在分析了鹽析分相法理論模型的基礎(chǔ)上,形成了自己的設(shè)計思想,開發(fā)出以分離效果計算器為核心的應(yīng)用程序,在不同的實驗條件下,可方便求得經(jīng)歷鹽析效應(yīng)達到兩相平衡時,有機相中水和有機物的含量,實現(xiàn)了分離效果的計算機仿真計算。最后,開發(fā)了基于GA-MSVR的鹽析分相法預(yù)測軟件,將GA-MSVR模型應(yīng)用到分離恒沸有機水溶液的有關(guān)計算中,以期減少化學實驗的盲目性,降低實驗成本,為此問題的解決提供一種計算機模擬分析的途徑。同時進行了相關(guān)的實驗驗證工作,取得了較好的實驗結(jié)果。在與多個單輸出支持向量回歸算法預(yù)測的分離效果的比較中,由于GA-MSVR考慮到了多個輸出之間的聯(lián)系,具有更好的整體預(yù)測精度。
[Abstract]:In the related research of chemical separation process, salting-out phase separation method is recognized as an effective method for separating azeotropic organic aqueous solution, and it is also a research hotspot at present. However, the theory of this method is still immature. There are many difficulties in the process of research and development. In this paper, a multi-dimensional support vector regression model based on genetic algorithm (GA) is constructed. The main work of this paper is as follows: first, as an interdisciplinary research topic, through understanding the basic theoretical knowledge in the field of chemical separation. The separation methods of azeotropic organic aqueous solution were mainly studied. The method of computer simulation was used to solve the problem of lack of experimental data in salting-out phase method. The typical problems of liquid-liquid phase equilibrium in organic-water-inorganic salt system are analyzed, and the multi-output support vector regression algorithm is proposed to predict the content of organic matter and water after salting out. The multi-dimension support vector regression algorithm is studied in this paper. Genetic algorithm is used to optimize the parameters of MSVR so as to realize the automatic selection of parameters and avoid the randomness and subjectivity of parameter selection. The constructive algorithm of GA-MSVR model is proposed, and the related experimental design and verification work are carried out by using the simulation data of multidimensional function mapping. On the basis of analyzing the theoretical model of salting-out phase separation method, the author formed his own design idea, and developed an application program with the separation effect calculator as the core, under different experimental conditions. It is convenient to obtain the content of water and organic matter in organic phase when the salting-out effect reaches two-phase equilibrium and realize the computer simulation calculation of separation effect. Finally. A phase separation prediction software based on GA-MSVR was developed and the GA-MSVR model was applied to the calculation of separating azeotropic organic aqueous solution in order to reduce the blindness of chemical experiments. To reduce the cost of the experiment, this paper provides a way of computer simulation and analysis to solve the problem. At the same time, the related experimental verification work is carried out. Good experimental results have been obtained. In comparison with the prediction results of multiple single-output support vector regression algorithms, GA-MSVR takes into account the relationship between multiple outputs. Better overall prediction accuracy.
【學位授予單位】:河北工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TQ028;TP18
【參考文獻】
相關(guān)期刊論文 前2條
1 丁世飛;齊丙娟;譚紅艷;;支持向量機理論與算法研究綜述[J];電子科技大學學報;2011年01期
2 黃濤,湯志剛,段占庭;萃取-恒沸精餾聯(lián)合流程用于異丙醇-水分離的節(jié)能研究[J];精細化工;2003年05期
相關(guān)碩士學位論文 前1條
1 李楊;鹽效應(yīng)分離共沸混合物的研究[D];天津大學;2007年
,本文編號:1473669
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1473669.html
最近更新
教材專著