離子液體電沉積鋅鎳及鋅鎂合金的研究
本文關(guān)鍵詞: 離子液體 鋅鎳合金 鋅鎂合金 電沉積 循環(huán)伏安曲線 出處:《昆明理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:鋅合金作為一種新型的防護(hù)鍍層一直受到廣泛的關(guān)注,由于其具有良好的成型性、可焊性、上漆性,被廣泛的用作航空航天、汽車、電子等工業(yè)中鋼制品的防護(hù)層。傳統(tǒng)的鋅鎳合金生產(chǎn)方法有熔融法和電鍍兩種。熔融法生產(chǎn)的鋅鎳合金分散程度差,合金中鎳含量低,不符合現(xiàn)在的防腐要求。電鍍主要有酸性和堿性水溶液兩種,由于其對環(huán)境不友好,使得其在工業(yè)上的應(yīng)用受到影響。鋅鎂合金生產(chǎn)的方法有熱鍍、真空鍍、熔鹽電鍍、氣相沉積等幾種,F(xiàn)在研究鋅鎂合金鍍層的焦點主要在硫酸水溶液中,鍍層中的鎂含量較低。因此,尋求一種低成本、工藝簡單、綠色環(huán)保的鋅合金制備方法具有重要的意義;谏鲜銮闆r我們采用EG-ZnCl2離子液體和尿素-氯化鋅-氯化鎳低共融鹽體系作為電解質(zhì),進(jìn)行了鋅鎂合金和鋅鎳合金電沉積的研究。兩種電解質(zhì)不僅具有綠色環(huán)保的優(yōu)點,而且具有成本低廉、體系簡單、空氣不敏感等特點,可以在裸露的空氣中操作,符合綠色生產(chǎn)工藝可持續(xù)發(fā)展的要求。測定了ZnCl2、NiCl2、Urea三者不同含量時形成離子液體的電導(dǎo)率;采用計時電流法和循環(huán)伏安曲線等手段研究了鋅鎳合金的電化學(xué)性質(zhì);采用響應(yīng)曲面法對沉積條件進(jìn)行了優(yōu)化;采用EDS和XRD對鍍層進(jìn)行了分析。其結(jié)果表明:ZnCl2:NiCl2:Urea的摩爾比為:2.9:1.5:16.7時體系的電導(dǎo)率最好,電導(dǎo)率與溫度的關(guān)系符合Arrhenius公式,通過擬合得到該離子液體溶液的活化能為30.733kJ/mol; Zn-Ni的電結(jié)晶經(jīng)歷了形核過程,電結(jié)晶過程按瞬時形核進(jìn)行;在不掃速下的Urea-ZnCl2-NiCl2離子液體的循環(huán)伏安曲線中,隨著掃速的增大,還原峰值電流大致呈增加的趨勢;沉積溫度對鍍層中鋅的質(zhì)量分?jǐn)?shù)的影響較小,EG加入量和沉積電位的交互作用較為顯著,優(yōu)化得沉積條件為EG的質(zhì)量分?jǐn)?shù)為28.4%、沉積電位為2.1V、沉積溫度為358K;鍍層為球形顆粒組成,平均粒徑為2.5 μ m,無裂縫,無空隙,為鋅鎳合金的固溶體,Zn的質(zhì)量分?jǐn)?shù)為33%。加入EG后鍍層的顆粒平均直徑小于1μm,鍍層的厚度小于20μm,鍍層與基體的結(jié)合程度較好,平整,鍍層中Zn元素和Ni元素的分布均勻,Zn和Ni形成了均勻的合金。沉積電位、沉積時間、沉積溫度分別為2.5V、2h、353K的條件下,陰極為純銅片,陽極為石墨片。以質(zhì)量分?jǐn)?shù)為5%的NaOH作為添加劑在EG-ZnCl2-MgCl2體系中制備出了Zn-Mg合金。采用循環(huán)伏安法研究了體系的電化學(xué)性質(zhì);采用EDS、XRD和XPS等手段對鍍層進(jìn)行了分析。其結(jié)果表明:Zn-Mg合金的沉積是一個分步進(jìn)行的過程。先發(fā)生Zn的沉積,之后發(fā)生Zn-Mg合金的共沉積;鍍層呈疏松多孔的絮狀分布;Mg和Zn形成了非晶態(tài)的固溶體,鎂的存在形式分別有Mg和MgO;鋅的形式是以鋅單質(zhì)存在。
[Abstract]:Zinc alloy as a new type of protective coating has been widely concerned, because of its good formability, solderability, varnish, widely used in aerospace, automotive. The traditional production methods of zinc-nickel alloy are melting method and electroplating method. The zinc nickel alloy produced by melting method has poor dispersion degree and the nickel content in the alloy is low. Electroplating is mainly acidic and alkaline aqueous solution, because it is not friendly to the environment, so its application in industry is affected. The production methods of zinc and magnesium alloy are hot plating and vacuum plating. Molten salt electroplating, vapor deposition and so on. Now the focus of research on zinc magnesium alloy coating is mainly in sulfuric acid aqueous solution, the magnesium content in the coating is low. Therefore, to seek a low cost, simple process. The preparation method of green zinc alloy is of great significance. Based on the above situation we use EG-ZnCl2 ionic liquid and urea zinc chloride nickel chloride low eutectic salt system as electrolyte. The electrodeposition of zinc magnesium alloy and zinc nickel alloy was studied. The two electrolytes not only have the advantages of green and environmental protection, but also have the advantages of low cost, simple system and insensitive air. It can be operated in exposed air, which meets the requirement of sustainable development of green production process. The conductivity of ionic liquids formed when ZnCl _ 2 / NiCl _ 2 ~ (2 +) Urea content is different has been determined. The electrochemical properties of Zn-Ni alloy were studied by means of chronoamperometry and cyclic voltammetry. The deposition conditions were optimized by response surface method. EDS and XRD were used to analyze the coating. The results show that the conductivity of the system is the best when the mole ratio of w ZnCl 2: NiCl 2: U is 2. 9: 1. 5: 16. 7. The relationship between conductivity and temperature accords with the Arrhenius formula, and the activation energy of the ionic liquid solution is 30.733kJ / mol. The electrocrystallization of Zn-Ni goes through the nucleation process, and the electric crystallization process is carried out according to the instantaneous nucleation process. In the cyclic voltammetry curve of Urea-ZnCl2-NiCl2 ionic liquids without sweep velocity, the peak current of reduction increases with the increase of sweep speed. The effect of deposition temperature on the mass fraction of zinc in the coating is smaller than that of EG addition and deposition potential. The optimized deposition condition is that the mass fraction of EG is 28.4%. The deposition potential is 2.1 V and the deposition temperature is 358K; The coating is composed of spherical particles with an average particle size of 2.5 渭 m, no cracks and no voids, and is a solid solution of Zn-Ni alloy. The average diameter and thickness of the coating are less than 1 渭 m and 20 渭 m respectively, and the bonding degree between the coating and the substrate is good and smooth. The uniform distribution of Zn and Ni in the coating formed a uniform alloy. The deposition potential, deposition time and deposition temperature were 2.5V / 2h ~ 353K, respectively. Cathode is pure copper sheet. The anode is graphite sheet, the Zn-Mg alloy is prepared in EG-ZnCl2-MgCl2 system with NaOH of 5% mass fraction as additive. Cyclic voltammetry is used to study the electrochemical properties of the system. The nature of science; The deposit was analyzed by means of EDS-XRD and XPS. The results show that the deposition of Zn-Mg alloy is a step by step process, and the deposition of Zn occurs first. Then codeposition of Zn-Mg alloy occurred. The coating is porous and flocculent. Mg and Zn formed amorphous solid solution, and mg and MgO existed in mg and MgO respectively. Zinc exists in the form of zinc.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TQ153.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孔綱,盧錦堂,陳錦虹,許喬瑜,劉麗霞;堿性鋅鎳合金電沉積過程陰極極化的研究[J];材料保護(hù);1999年06期
2 夏同馳;李曉峰;董會超;梅金富;姬娜娜;;電沉積制備La-Mg-Ni貯氫合金薄膜及其性能的研究[J];稀有金屬材料與工程;2010年03期
3 蔡加勒;周紹民;;鋅-鎳電沉積層的晶體結(jié)構(gòu)及其電化學(xué)特征[J];電鍍與環(huán)保;1993年03期
4 朱立群;羅黨育;;鋅及鋅鎳合金鍍層涂漆后耐蝕性研究[J];電鍍與涂飾;1992年02期
5 楊立紅;張健;傅建欽;崔健;;新一代連續(xù)帶鋼真空鍍膜技術(shù)的發(fā)展現(xiàn)狀與展望[J];鋼鐵;2007年04期
6 湯廣瑞;何美鳳;仵亞婷;李俊;黃勝標(biāo);唐成龍;;添加劑對于水溶液中電沉積鋅鎂合金的影響[J];材料導(dǎo)報;2013年06期
7 王巍;初青偉;梁軍;戴劍鋒;;氯化膽堿-尿素離子液體中鎂合金表面電沉積電流密度對鍍鋅層性能的影響[J];材料保護(hù);2013年08期
8 趙霽雯;徐存英;華一新;李堅;劉海鵬;王震;;鎳在BMIC-GL離子液體中的陽極溶解行為[J];昆明理工大學(xué)學(xué)報(自然科學(xué)版);2014年03期
9 王建朝;二甲基甲酰胺中電沉積鎂鎳合金的研究[J];青海師范大學(xué)學(xué)報(自然科學(xué)版);2003年02期
10 張啟波;華一新;;Stability of [BMIM]HSO_4 for using as additive during zinc electrowinning from acidic sulfate solution[J];Journal of Central South University;2012年09期
相關(guān)碩士學(xué)位論文 前1條
1 汪瑞;尿素—氯化膽堿低共融體系中電沉積制備納米銅粉[D];昆明理工大學(xué);2014年
,本文編號:1470550
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1470550.html