天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化學(xué)工程論文 >

直接甲醇燃料電池填充型復(fù)合質(zhì)子交換膜的制備與性能研究

發(fā)布時間:2018-01-24 18:12

  本文關(guān)鍵詞: 燃料電池 孔填充 甲醇滲透 環(huán)氧樹脂 質(zhì)子交換膜 納米纖維 靜電紡絲 復(fù)合膜 直接甲醇燃料電池 出處:《吉林大學(xué)》2017年博士論文 論文類型:學(xué)位論文


【摘要】:作為一種能夠?qū)⒒瘜W(xué)能轉(zhuǎn)化為電能的電化學(xué)裝置,直接甲醇燃料電池由于其體積小,高燃料利用率,低排放和高能量密度等特性,被認(rèn)為是未來最有希望的清潔能源之一,一直以來得到研究工作者的廣泛關(guān)注。質(zhì)子傳導(dǎo)膜是燃料電池的核心部件,它是一種在燃料電池中傳遞質(zhì)子,分隔電池陽極與陰極的電解質(zhì)材料。常用的質(zhì)子傳導(dǎo)膜材料包括全氟磺酸系列,磺化芳香聚合物(如磺化聚芳醚,磺化聚苯并吡唑,磺化聚酰亞胺)等。質(zhì)子傳導(dǎo)膜的質(zhì)子傳導(dǎo)率,機(jī)械穩(wěn)定性,熱穩(wěn)定性,化學(xué)穩(wěn)定性以及尺寸穩(wěn)定性等性能是質(zhì)子傳導(dǎo)膜的關(guān)鍵數(shù)據(jù)。目前,全氟磺酸聚合物(Nafion~?)由于其高質(zhì)子傳導(dǎo)率和較為突出的綜合性能成為了被最廣泛使用的材料。然而全氟磺酸系列膜也存在著許多眾所周知的缺陷,包括造價較高、陽極反應(yīng)速率低、使用壽命有限、溶脹率高等,尤其是甲醇滲透十分嚴(yán)重,這些問題限制了DMFC的進(jìn)一步應(yīng)用。甲醇從陰極滲透到陽極會導(dǎo)致燃料使用效率下降,陰極催化劑中毒,以致整個電池的性能下降。為了減弱甲醇滲透帶來的影響,實(shí)際應(yīng)用中只能使用低于2M濃度的甲醇溶液作為燃料,大大降低了直接甲醇燃料電池的性能?紤]到水在質(zhì)子傳導(dǎo)中的作用以及燃料濃度對電池性能的影響,為了得到較高的能量密度,10M甲醇水溶液是直接甲醇燃料電池的理想燃料。因此,這種高濃度甲醇溶液的使用就要求質(zhì)子傳導(dǎo)膜具有極小的甲醇滲透率和較高的尺寸穩(wěn)定性。本論文旨在制備適用于高濃度甲醇溶液中的復(fù)合質(zhì)子交換膜,并分別對其機(jī)械性能,熱學(xué)性能,化學(xué)穩(wěn)定性,傳導(dǎo)率和電池性能進(jìn)行了研究,從而探究傳導(dǎo)膜的不同制備方法和材料對DMFC在高濃度甲醇中的電池性能的影響。具體內(nèi)容分為三部分:孔填充復(fù)合質(zhì)子交換膜,靜電紡絲纖維孔隙填充復(fù)合質(zhì)子交換膜和多維紡絲纖維孔隙填充復(fù)合質(zhì)子交換膜。這三部分內(nèi)容基于同樣的理念,即由機(jī)械強(qiáng)度高,阻醇性好的材料與高質(zhì)子傳導(dǎo)率的材料利用孔隙填充的方法制備復(fù)合質(zhì)子交換膜。第一部分,我們成功制備了基于聚醚砜的孔填充質(zhì)子交換膜,并對其性能進(jìn)行了測試。首先合成了具有低磺化度和一定比例氨基的磺化聚醚砜(ASPES),并利用在鑄膜液中引入離子液體的方法制備了ASPES多孔膜,同時研究了制備過程中離子液體的含量對多孔膜孔形貌的影響。接著我們首次合成了環(huán)氧基封端的磺化聚醚砜低聚物(DSPES)作為復(fù)合膜填充電解質(zhì),并用低聚物DSPES對ASPES多孔膜基體進(jìn)行填充,固化交聯(lián),制備復(fù)合膜。由于ASPES磺酸根含量低,在水中具有良好的尺寸穩(wěn)定性,因而抑制了復(fù)合膜的溶脹效應(yīng),溶脹率的降低使得聚合物分子鏈間作用增強(qiáng),同時抑制了甲醇的滲透作用。在氨基作用下,環(huán)氧聚合物在多孔膜中交聯(lián)形成三維結(jié)構(gòu),大大的提高了復(fù)合膜機(jī)械性能,從而進(jìn)一步抑制了復(fù)合膜的溶脹和甲醇滲透效應(yīng)。得到的復(fù)合膜同時具有優(yōu)異的氧化穩(wěn)定性,熱穩(wěn)定性和機(jī)械強(qiáng)度,雖然其質(zhì)子傳導(dǎo)率略低于Nafion~?,但與同類型的孔填充復(fù)合膜相比,其傳導(dǎo)率仍然相對較高,同時,由于復(fù)合膜具有很低的甲醇滲透率,因此在傳導(dǎo)率和甲醇滲透率之間的選擇性較高,遠(yuǎn)高于Nafion~?膜。在10M甲醇溶液中,復(fù)合膜同樣表現(xiàn)出了高于Nafion~?的單電池性能。第二部分,我們成功制備了兩種PDMS和Nafion~?互為填充相的復(fù)合膜為,從納米尺度抑制復(fù)合膜溶脹及甲醇滲透。一種為Nafion~?填充PDMS靜電紡纖維復(fù)合膜,一種為PDMS填充Nafion~?靜電紡絲纖維復(fù)合膜。我們對兩者及Nafion~?的性能進(jìn)行了測試和比較。實(shí)驗(yàn)中首先分別制備了PDMS和Nafion~?的纖維膜,并分別按照不同的比例使用Nafion~?溶液填充PDMS纖維膜,使用PDMS填充Nafion~?纖維膜。靜電紡絲纖維和填充后的復(fù)合膜表面及截面的形貌同過掃描電鏡度進(jìn)行了表征。由復(fù)合膜和Nafion~?的吸水率溶脹率測試結(jié)果發(fā)現(xiàn),由于疏水性PDMS的引入,復(fù)合膜的吸水溶脹率要遠(yuǎn)低于Nafion~?膜。同時復(fù)合膜的熱穩(wěn)定性氧化穩(wěn)定性在熱失重分析和芬頓試劑測試中均優(yōu)于Nafion~?膜。復(fù)合膜和Nafion~?膜在10M甲醇水溶液中的電池性能同樣與Nafion~?進(jìn)行了比較,證明復(fù)合膜在高濃度甲醇溶液中的電池性能要高于Nafion~?膜,且Nafion~?為填充相時,復(fù)合膜電池性能性能提升幅度較大。第三部分,由上述實(shí)驗(yàn)可知Nafion~?為填充主體時復(fù)合膜電池性能更優(yōu),同時為了提高纖維膜的可填充充性,我們制備了以Nafion~?為填充主體的超薄的聚偏氟乙烯(PVDF)靜電紡絲纖維復(fù)合膜和PVDF/PTFE混合靜電紡絲纖維與Nafion的復(fù)合膜,并將其纖維層用作復(fù)合膜中甲醇的阻醇層。首先我們制備了一系列Nafion~?填充的多層靜電紡絲PVDF纖維復(fù)合膜,并對其與Nafion~?膜的性能進(jìn)行了測試和比較。纖維及復(fù)合膜的形貌和結(jié)構(gòu),熱穩(wěn)定性,機(jī)械穩(wěn)定性,化學(xué)穩(wěn)定性,質(zhì)子傳導(dǎo)率以及單電池性能均得到了表征。與Nafion~?膜相比,PVDF纖維膜的引入顯著的增強(qiáng)了復(fù)合膜的熱穩(wěn)定性和化學(xué)穩(wěn)定性,同時抑制了膜的吸水溶脹作用。復(fù)合膜在10M甲醇溶液中同時表現(xiàn)出了相比于Nafion~?更高的電池性能,然而復(fù)合膜的電池性能相近,并沒有隨著PVDF纖維膜層數(shù)的增加而升高;谝陨蠈(shí)驗(yàn)結(jié)果,我們又設(shè)計制備了單側(cè)(陽極側(cè)和陰極側(cè))具有單層PTFE/PVDF纖維阻醇層的Nafion~?115復(fù)合膜,并對其在5 M和10 M甲醇溶液中的電池性能進(jìn)行了測試。測試結(jié)果表明相比于商業(yè)化的Nafion~?115膜,復(fù)合膜的電池性的得到了較大的提高,同時電池的能量密度隨著PTFE在纖維中的質(zhì)量分?jǐn)?shù)的升高而升高,此外,PTFE/PVDF纖維膜在電池陽極側(cè)時,電池性能要高于其在電極陰極側(cè)時。在以上三部分實(shí)驗(yàn)中,分別制備了一系列的多種孔填充復(fù)合膜,包括多孔填充膜和靜電紡絲纖維填充膜等。這些膜的性能在實(shí)驗(yàn)中得到了多方面的測試,尤其是膜在高濃度甲醇溶液中的單電池性能,測試結(jié)果表明了復(fù)合膜孔填充制備方法以及使用材料的有效性,復(fù)合膜的性能均優(yōu)于Nafion~?膜,并通過不斷的改進(jìn),制備的陽極單側(cè)9%PTFE/PVDF與Nafion~?115的性能要遠(yuǎn)好于商用Nafion~?115且方法制備簡單易行,不破壞商品膜的內(nèi)部結(jié)構(gòu),具有重要的參考意義。
[Abstract]:As a way to convert chemical energy into electrical energy electrochemical devices, direct methanol fuel cell because of its small volume, high fuel utilization, low emission characteristics and high energy density, is considered one of the most promising future clean energy, has been widely concerned. The research work is a proton conducting membrane the core components of the fuel cell, it is a kind of proton transfer in the fuel cell, electrolyte battery anode and cathode materials separation. Proton conducting membrane materials used include perfluorinated sulfonic acid series, sulfonated aromatic polymer (such as sulfonated poly aryl ether, sulfonated polyphenylene and pyrazole, sulfonated polyimide). Proton conducting proton conducting membrane the rate of mechanical stability, thermal stability, chemical stability and dimensional stability performance is the key data of proton conducting membrane. At present, perfluorosulfonic acid polymer (Nafion~?) because of its high proton conductivity The comprehensive performance of the more prominent and become the most widely used materials. However Nafion film series also has many defects including high cost as everyone knows, the anode, the reaction rate is low, the service life is limited, the swelling rate higher, especially the methanol permeability is very serious, these problems limit the further application of DMFC from methanol. The cathode to anode penetration will lead to a decline in fuel efficiency, cathode catalyst poisoning, so the battery performance decline. In order to reduce methanol permeability caused by the practical application can be used in the lower concentration of 2M methanol as fuel, greatly reduces the performance of a direct methanol fuel cell. Considering the effect of water on proton conduction in and the fuel concentration on the performance of the battery, in order to obtain a higher energy density, 10M methanol water solution is an ideal fuel for direct methanol fuel cell. So Using this, the dimensional stability of high concentration methanol solution requires a proton conducting membrane with minimal methanol permeability and high proton. This thesis is suitable for preparation of high concentration methanol solution exchange membrane, and the mechanical properties, thermal properties, chemical stability, conductivity and cell performance were studied. Effects of different preparation methods and materials to explore the conductive film on the battery performance of DMFC in high concentration of methanol. The specific content is divided into three parts: the hole filling composite proton exchange membrane, electrospun fibers, complex pore filling alloy PEM and multidimensional spinning fiber pore filling composite proton exchange membrane. These three parts based on the same concept, namely, high mechanical strength, method of pore filling materials prepared by methanol well with high proton conductivity of composite proton exchange membrane. The first part, I We successfully prepared PES hole filling based on proton exchange membrane, and its performance was tested. The first synthesis of sulfonated polyethersulfone with low sulfonation degree and a certain proportion of amino group (ASPES), ASPES and preparation of porous membrane by means of introducing ionic liquids in casting solution were also studied. The influence of content of ionic liquid in the preparation process on the pore morphology. Then we synthesized sulfonated polyether sulfone epoxy terminated oligomer (DSPES) as the composite membrane filled with electrolyte, and the porous ASPES matrix are filled with DSPES polymer crosslinking, preparation of composite film. Because the ASPES sulfonic acid content low, has good dimensional stability in water, thus inhibiting the swelling effect of the composite membrane, reduce the swelling rate of the polymer molecular chain enhanced, while inhibiting the penetration of methanol in ammonia medium under the action of the ring Oxygen crosslinked polymer in porous film formed in the three-dimensional structure, greatly improve the mechanical properties of composite membrane, which further inhibit composite membrane swelling and methanol permeability effect. The resulting composite membrane also has excellent oxidation stability, thermal stability and mechanical strength, while the proton conductivity is slightly lower than Nafion~, but with the same type? The hole is filled with a composite film, its transmission rate is high, is still relatively at the same time, because the methanol permeability of composite membrane has very low, so in between the conductivity and methanol permeability of high selectivity, far higher than Nafion~? Membrane. In methanol solution of 10M, composite membrane also showed higher than that of Nafion~? The single cell performance. The second part, we successfully prepared two kinds of PDMS and Nafion~? Are filled composite film phase, from nano scale inhibition of composite membrane swelling and methanol permeability. A Nafion~ filled PDMS electrospun fiber? Dimensional composite film, a PDMS filled Nafion~? Electrospun fiber composite membrane. We both and Nafion~? Performance were tested and compared. In this experiment, PDMS and Nafion~ respectively were prepared? The fiber membrane, and respectively according to the ratio of Nafion~? PDMS solution filling fiber membrane, filling Nafion~ PDMS? Fiber membrane. Membrane surface and cross-section morphology of the composite fibers by electrospinning and after filling were characterized with scanning electron microscopy. The composite membrane and Nafion~? Water absorption swelling rate test results showed that due to the introduction of hydrophobic PDMS, the swelling rate of composite membrane is much lower than that of Nafion~ membrane. At the same time? The thermal stability of the oxidation stability of composite membrane in thermogravimetric analysis and Fenton reagent test was superior to Nafion~ membrane and Nafion~ membrane.?? The same with the performance of Nafion~ battery membrane in 10M methanol in aqueous solution were compared to prove that? The battery performance of membrane in high concentration methanol solution was higher than that of Nafion~ film, and Nafion~?? as the filling phase, the battery performance of composite membrane to improve greatly. The third part, the experiment shows that Nafion~ is the main performance? Filled composite membrane cell better, at the same time in order to improve can be filled with fiber membrane and we were prepared using Nafion~ as the main filling? Thin polyvinylidene fluoride (PVDF) composite membrane electrospun fiber composite membrane and PVDF/PTFE mixed electrospun fibers and Nafion, and the fiber layer is used as the methanol methanol layer in the composite film. First, we prepared a series of Nafion~ multilayer prepared? The electrospun PVDF fiber composite membrane filled, and the Nafion~? Membrane properties were tested and compared. The morphology and structure of fiber and composite membrane, thermal stability, mechanical stability, chemical stability, proton conductivity and single cell. Could have been characterized with Nafion~? Film compared to the introduction of PVDF fiber membrane significantly enhances the thermal stability of composite membranes and chemical stability, and restrain the swelling effect of membrane. The composite film in 10M methanol solution at the same time show compared to the Nafion~ battery? Higher performance, but the performance of the composite battery the film is similar, and not increased with the increasing of PVDF fiber layers. Based on the above experimental results, we designed the unilateral preparation (anode side and cathode side) with single PTFE/PVDF fiber methanol layer Nafion~? 115 composite film, and the 5 M and 10 M methanol solution in battery performance tested. Test results show that compared to the commercial Nafion~? 115 membrane, composite membrane of the cell was improved, and the energy density of the battery is increased with the increase of mass fraction of PTFE in the fiber and PTFE/PV DF fiber membrane in the anode side, the battery performance is higher than that of the cathode side. In the above three parts were prepared in the experiment, a series of multiple hole filling composite membrane comprises a porous membrane and filled electrospun fibers filled membrane. The performance of these membranes was tested in many aspects in the experiment, especially the single cell performance of membrane in high concentration methanol solution, the test results show that the composite membrane pore filling preparation method and the effectiveness of the use of materials, the performance of composite membranes were better than those of Nafion~? Film, and through continuous improvement, preparation of anode unilateral 9%PTFE/PVDF with Nafion~? 115 performance be far better than the commercial Nafion~? 115 and the preparation method is simple and easy, does not destroy the internal structure of commercial membranes, which has important reference significance.

【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TQ425.236;TM911.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 黃雪樓;周忠德;趙力之;;離子交換膜[J];科學(xué);1959年01期

2 肖帶麗;;無氟質(zhì)子交換膜的研究和進(jìn)展[J];廣東化工;2010年07期

3 李瓊;李薇;張海寧;潘牧;;聚合物質(zhì)子溶劑在質(zhì)子交換膜中的應(yīng)用[J];電源技術(shù);2011年04期

4 張增英;;氟離子交換膜[J];杭州化工;1991年04期

5 孫紅;欒麗華;吳鐵軍;唐玉蘭;王遜;;質(zhì)子交換膜中的傳質(zhì)分析[J];工程熱物理學(xué)報;2012年02期

6 艾明歡;李海濱;;超薄CsH_2PO_4/SiO_2復(fù)合質(zhì)子交換膜的制備[J];材料導(dǎo)報;2012年04期

7 楊萌;相艷;王慕冰;康思聰;徐惠彬;;化學(xué)與生物改性合成質(zhì)子交換膜[J];化學(xué)進(jìn)展;2009年01期

8 吳魁;解東來;;高溫質(zhì)子交換膜研究進(jìn)展[J];化工進(jìn)展;2012年10期

9 石倩茹;陶慷;章勤;薛立新;張堯劍;;離子液體在質(zhì)子交換膜中的應(yīng)用研究進(jìn)展[J];膜科學(xué)與技術(shù);2013年03期

10 羅居杰;宋艷慧;崔培培;謝小玲;;接枝磺酸基質(zhì)子交換膜的制備及性能研究[J];化工新型材料;2014年03期

相關(guān)會議論文 前10條

1 張燕梅;方軍;伍永彬;;用于堿性直接甲醇燃料電池的新型含氟陰離子交換膜的制備及表征[A];中國化學(xué)會第十一屆全國氟化學(xué)會議論文摘要集[C];2010年

2 徐維林;陸天虹;邢巍;;低甲醇透過質(zhì)子交換膜的研究[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會議論文集[C];2004年

3 劉盛洲;張興鵬;印杰;;嵌段長度對磺酸基嵌段共聚物質(zhì)子交換膜性能的影響研究[A];2006年全國高分子材料科學(xué)與工程研討會論文集[C];2006年

4 石守穩(wěn);陳旭;;浸泡質(zhì)子交換膜力學(xué)性能及其微觀變形機(jī)理的研究[A];中國力學(xué)大會——2013論文摘要集[C];2013年

5 馮慶霞;張冬芳;嚴(yán)六明;;納米復(fù)合H_3PO_4-BPO_4-ABPBI高溫質(zhì)子交換膜的制備與表征[A];中國化學(xué)會第27屆學(xué)術(shù)年會第10分會場摘要集[C];2010年

6 李林繁;于洋;鄧波;虞鳴;謝雷東;李景燁;陸曉峰;;輻射接枝法制備質(zhì)子交換膜的研究[A];中國核科學(xué)技術(shù)進(jìn)展報告——中國核學(xué)會2009年學(xué)術(shù)年會論文集(第一卷·第8冊)[C];2009年

7 王博;王新東;王文紅;張紅飛;陳玲;;燃料電池質(zhì)子交換膜電導(dǎo)率的測試方法研究[A];冶金研究中心2005年“冶金工程科學(xué)論壇”論文集[C];2005年

8 薛松;尹鴿平;;磺化聚醚醚酮/磷鎢酸復(fù)合質(zhì)子交換膜[A];第十三次全國電化學(xué)會議論文摘要集(上集)[C];2005年

9 朱靖;邵柯;那輝;;基于靜電紡絲技術(shù)的納米纖維質(zhì)子交換膜材料[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(上冊)[C];2009年

10 紀(jì)曉波;嚴(yán)六明;陸文聰;馬和平;;酸堿質(zhì)子交換膜中質(zhì)子動力學(xué)行為及協(xié)同效應(yīng)[A];中國化學(xué)會第27屆學(xué)術(shù)年會第14分會場摘要集[C];2010年

相關(guān)重要報紙文章 前1條

1 本報記者 李香才;質(zhì)子交換膜燃料電池技術(shù)取得進(jìn)展[N];中國證券報;2013年

相關(guān)博士學(xué)位論文 前10條

1 袁森;燃料電池用新型聚酰亞胺及聚硫醚砜基質(zhì)子交換膜的研究[D];上海交通大學(xué);2014年

2 劉鑫;燃料電池用磺酸化聚醚醚酮質(zhì)子交換膜的制備與改性研究[D];北京化工大學(xué);2015年

3 付鳳艷;聚磷腈類質(zhì)子交換膜的制備與表征[D];北京理工大學(xué);2015年

4 喬宗文;側(cè)鏈型磺化聚砜質(zhì)子交換膜的制備、微相分離結(jié)構(gòu)與性能的研究[D];中北大學(xué);2016年

5 吳斌;質(zhì)子交換膜微觀結(jié)構(gòu)調(diào)控研究[D];天津大學(xué);2015年

6 張杰;含POSS嵌段共聚物質(zhì)子交換膜的制備及性能研究[D];西北工業(yè)大學(xué);2016年

7 李云蹊;直接甲醇燃料電池填充型復(fù)合質(zhì)子交換膜的制備與性能研究[D];吉林大學(xué);2017年

8 王曉恩;復(fù)合質(zhì)子交換膜機(jī)械增強(qiáng)與溫濕度響應(yīng)特性[D];武漢理工大學(xué);2011年

9 鐘雙玲;直接甲醇燃料電池用新型質(zhì)子交換膜的制備與性能研究[D];吉林大學(xué);2008年

10 曾松軍;新型聚倍半硅氧烷基酸—堿無水質(zhì)子交換膜的制備與性能研究[D];湖南大學(xué);2011年

相關(guān)碩士學(xué)位論文 前10條

1 陳駿;金屬雙極板質(zhì)子交換膜燃料電池內(nèi)阻研究[D];武漢理工大學(xué);2014年

2 韓澍;含羧基磺化聚芳醚酮砜類質(zhì)子交換膜材料的制備與性能研究[D];長春工業(yè)大學(xué);2015年

3 梁宇;交聯(lián)型直接甲醇燃料電池質(zhì)子交換膜的制備及性能研究[D];蘭州大學(xué);2015年

4 薛童;磺化嵌段聚醚砜質(zhì)子交換膜的制備與改性[D];南京理工大學(xué);2015年

5 袁祖鳳;磺化聚芳酸砜類側(cè)鏈型質(zhì)子交換膜的制備及改性[D];南京理工大學(xué);2015年

6 胡玉濤;咪唑摀化聚砜共混氫氧根交換膜的制備與性能[D];大連理工大學(xué);2015年

7 修鳳羽;半超支化半交聯(lián)磺化聚酰亞胺復(fù)合質(zhì)子交換膜制備及性能研究[D];大連理工大學(xué);2015年

8 孫成剛;直接甲醇燃料電池用高性能含硅無皂乳液的制備及性能研究[D];吉林農(nóng)業(yè)大學(xué);2015年

9 李亞婷;帶有穩(wěn)定側(cè)鏈的接枝型質(zhì)子交換膜制備及性能研究[D];大連理工大學(xué);2015年

10 李憧;質(zhì)子交換膜燃料電池的自抗擾控制研究[D];北京化工大學(xué);2015年

,

本文編號:1460677

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1460677.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶10a2e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com