天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化學(xué)論文 >

基于氮化碳光電材料構(gòu)建及其光電性能研究

發(fā)布時(shí)間:2019-05-29 00:56
【摘要】:在大力提倡發(fā)展社會(huì)經(jīng)濟(jì),更新科學(xué)技術(shù)的時(shí)代下,能源危機(jī)和生態(tài)環(huán)境污染問題始終是人們不可避免的兩大難題。光電化學(xué)研究在實(shí)現(xiàn)高效率光電轉(zhuǎn)換,改善能源危機(jī)和解決環(huán)境污染等難題方面貢獻(xiàn)巨大。氮化碳作為一類具有優(yōu)異的熱穩(wěn)定性和化學(xué)穩(wěn)定性的新型半導(dǎo)體材料,在光催化降解污染物,光催化分解水制氫和電催化氧還原等領(lǐng)域有廣泛應(yīng)用。然而,因其比表面積小、活性位點(diǎn)少、光利用率不高難以發(fā)揮其在光電化學(xué)領(lǐng)域的重要作用。因此,對(duì)氮化碳材料進(jìn)行改性以改善其光電化學(xué)性能尤為重要。本文主要設(shè)計(jì)在氮化碳表面負(fù)載金屬,期望通過引入金屬增強(qiáng)氮化碳的光電化學(xué)性能,并且經(jīng)過一系列的表征測(cè)試分析,如XRD、XPS、PL等手段探討了金屬對(duì)氮化碳光電性能的影響,以及成功構(gòu)建檢測(cè)酚類及抗生素的光電化學(xué)傳感器。本論文首先選擇了三種不同制備方法合成的氮化碳材料,即以二氰二胺為原料,通過兩步煅燒法熱聚合制備氮化碳BCN;在此基礎(chǔ)上將其通過強(qiáng)酸(鹽酸)室溫?cái)嚢杼幚淼玫劫|(zhì)子化氮化碳CNH;最后將三聚氯氰(cyanuric chloride)、三聚氰胺(melamine)在溶劑熱條件下合成氮化碳GCN,并對(duì)上述三種氮化碳進(jìn)行光電性能的考察。經(jīng)過對(duì)三種氮化碳材料進(jìn)行光電流測(cè)試,結(jié)果表明,CNH光生電流響應(yīng)能力最強(qiáng),說明CNH材料內(nèi)部電子與空穴對(duì)的分離速率均高于其他兩種氮化碳(BCN,GCN),其光電化學(xué)性能優(yōu)于BCN,GCN材料。而且,在加入相同濃度的酚類有害物質(zhì)4-氯苯酚(4-CP)后,CNH材料的光生電流響應(yīng)增幅最大。因此,構(gòu)建了基于CNH檢測(cè)4-CP的光電化學(xué)傳感器,CNH檢測(cè)4-CP的線性范圍是6.1-13.5μM,檢測(cè)限為2.1μM。其次,設(shè)計(jì)將金屬與CNH材料進(jìn)行復(fù)合以進(jìn)一步調(diào)控氮化碳的光電化學(xué)性能。選用傳統(tǒng)的檸檬酸三鈉化學(xué)還原氯金酸(HAuCl4·4H2O)的方法,在CNH表面上負(fù)載金屬Au。經(jīng)過表征分析得出,Au是以Au單質(zhì)(Au0)的形式均勻分布在CNH的表面。經(jīng)過質(zhì)子化的CNH表面有大量的H+,可定向的與AuCl4-結(jié)合,提高Au單質(zhì)在CNH表面的分散性。Au的引入大幅度提高CNH的光吸收能力和擴(kuò)寬光響應(yīng)范圍。通過光電流測(cè)試結(jié)果表明,10 wt%Au/CNH具有最佳光電化學(xué)性能。由于Au的等離子體(SPR)效應(yīng)能誘導(dǎo)氮化碳CNH內(nèi)部導(dǎo)帶上的電子快速遷移至電極表面,能有效分離電子-空穴對(duì),促進(jìn)光生電流的增強(qiáng)。因此,Au的引入大幅提高CNH的光電化學(xué)性能。另外將Au/CNH復(fù)合納米光電材料構(gòu)建檢測(cè)4-CP的光電化學(xué)傳感器,相比單體CNH材料,Au/CNH能高效靈敏檢測(cè)4-CP,檢測(cè)限低至0.08μM。最后,通過銅基離子液體([C_(16)mim]_2CuCl_4)輔助溶劑熱法,在GCN的表面原位引入金屬Cu,并考察Cu的引入對(duì)GCN光電性能的影響。紫外-可見漫反射(DRS)光譜和光致發(fā)光光譜(PL)表征結(jié)果表明,Cu/GCN復(fù)合納米光電材料其光吸收范圍明顯擴(kuò)寬,且發(fā)光強(qiáng)度遠(yuǎn)低于GCN材料,表明Cu/GCN復(fù)合材料的電子-空穴復(fù)合率大幅降低,表現(xiàn)出優(yōu)異的光化學(xué)性能。而且對(duì)其進(jìn)行光電流測(cè)試發(fā)現(xiàn),經(jīng)Cu改性后的GCN材料,由于Cu優(yōu)異的捕獲電子和導(dǎo)電子能力,使Cu/GCN電子-空穴對(duì)的分離速率增強(qiáng),從而提高光電流響應(yīng)。而且,5 wt%Cu/GCN表現(xiàn)出最優(yōu)的光電化學(xué)性能。同樣的,將5 wt%Cu/GCN構(gòu)建光電化學(xué)傳感器測(cè)試對(duì)BPA的光電檢測(cè)性能,其檢測(cè)下限低至0.012μM。因此,將金屬與氮化碳材料進(jìn)行復(fù)合,不僅大幅度提高光電化學(xué)響應(yīng)信號(hào),而且對(duì)構(gòu)建光電化學(xué)傳感器檢測(cè)酚類及抗生素等一些有害物質(zhì)具有實(shí)際性的指導(dǎo)意義。
[Abstract]:In the era of vigorously promoting the development of the social economy and updating the science and technology, the energy crisis and the ecological environmental pollution have always been the two main problems that people are inevitable. Photoelectrochemical research has made great contributions to the problems of high efficiency photoelectric conversion, energy crisis and environmental pollution. As a new type of semiconductor material with excellent thermal stability and chemical stability, carbon nitride is widely used in the fields of photocatalytic degradation of pollutants, photocatalytic decomposition of water, and electrocatalytic oxygen reduction. However, because of its small specific surface area, less active site and low light utilization rate, it is difficult to exert its important role in the field of photochemistry. Therefore, it is particularly important to modify the carbon nitride material to improve the photoelectric chemical properties thereof. This paper is mainly designed on the surface of carbon nitride, and it is expected to enhance the photoelectrochemical performance of the carbon nitride by introducing the metal, and through a series of characterization test and analysis, such as XRD, XPS and PL, the effect of the metal on the photoelectric properties of the carbon nitride is discussed. And successfully constructing a photoelectric chemical sensor for detecting the phenols and the antibiotics. In this paper, three kinds of carbon nitride materials, which are synthesized by three different preparation methods, are selected as raw materials, and the carbon nitride BCN is prepared by the thermal polymerization of the two-step two-step sintering method, and the protonated carbon nitride CNH is obtained by stirring at room temperature with strong acid (hydrochloric acid) at room temperature. Finally, cyanuric chloride (cyanuric chloride) and melamine (Melamine) were synthesized into carbon nitride (GCN) under the condition of solvent, and the photoelectric properties of the three kinds of carbon nitride were investigated. The photo-current test of three carbon nitride materials shows that the response capability of CNH is the strongest, and the separation rate of the electron and hole pairs in the CNH material is higher than that of the other two kinds of carbon nitride (BCN, GCN), and the photoelectrochemical performance is better than that of the BCN and GCN materials. Moreover, after the addition of 4-chlorophenol (4-CP) with the same concentration of phenol, the photo-generated current response of the CNH material is the largest. Therefore, a photoelectric chemical sensor based on CNH for 4-CP is constructed. The linear range of the CNH detection 4-CP is 6.1-13.5. m u.M, and the detection limit is 2.1. m u.M. Secondly, the metal is combined with the CNH material to further control the photoelectrochemical performance of the carbon nitride. The traditional method for the chemical reduction of chloroauric acid (HAuCl4 路 4H2O) by trisodium citrate is used to load the metal Au on the surface of the CNH. It is found that Au is uniformly distributed on the surface of CNH in the form of Au (Au0). The protonated CNH surface has a large number of H +, orientable and AuCl4-binding, and the dispersion of the simple substance on the surface of the CNH is improved. The introduction of Au greatly improves the light absorption capacity and the light response range of CNH. The results of photocurrent test show that 10 wt% Au/ CNH has the best photoelectrochemical performance. Since the plasma (SPR) effect of Au can induce the rapid migration of electrons on the conduction band of the carbon CNH to the surface of the electrode, the electron-hole pair can be effectively separated, and the enhancement of the photo-generated current can be promoted. Therefore, the introduction of Au greatly improves the photoelectrochemical performance of the CNH. in addition, the Au/ CNH composite nanometer photoelectric material is used for constructing a photoelectric chemical sensor for detecting 4-CP, compared with the monomer CNH material, the Au/ CNH can efficiently and sensitively detect the 4-CP, and the detection limit is low to 0.08. mu; M; and finally, the metal Cu is introduced in situ on the surface of the GCN by a copper-based ionic liquid ([C _ (16) mim] _ 2CuCl _ 4) as the auxiliary solvothermal method, The influence of the introduction of Cu on the photoelectric properties of the GCN is also investigated. The results of ultraviolet-visible diffuse reflection (DRS) and photoluminescence (PL) show that the light absorption range of the Cu/ GCN composite nano-electro-optical material is obviously widened, and the luminescence intensity is much lower than that of the GCN material, indicating that the electron-hole recombination rate of the Cu/ GCN composite material is greatly reduced, Showing excellent photochemical properties. It was found that after Cu-modified GCN material, the separation rate of Cu/ GCN electron-hole pair was enhanced, and the photocurrent response was improved. Furthermore, the 5 wt% Cu/ GCN exhibited the optimum photoelectrochemical performance. In the same way, the photoelectric detection performance of the photoelectric chemical sensor test on the BPA is constructed by the 5 wt% Cu/ GCN, the lower limit of the detection is as low as 0.012. m u.M, therefore, the metal and the carbon nitride material are compounded, so that the photoelectric chemical response signal is greatly improved, But also has the guiding significance for building a photoelectric chemical sensor to detect some harmful substances such as phenols and antibiotics.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O657

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李仁貴;;太陽(yáng)能分解水制氫最近進(jìn)展:光催化、光電催化及光伏-光電耦合途徑(英文)[J];催化學(xué)報(bào);2017年01期

2 王悅;蔣權(quán);尚介坤;許杰;李永昕;;介孔氮化碳材料合成的研究進(jìn)展[J];物理化學(xué)學(xué)報(bào);2016年08期

3 陳齊;史振濤;許士洪;;溶劑熱法合成石墨相氮化碳納米球[J];東華大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年03期

4 焦玉娟;曹慧;耿仁勇;潘璐;呂雪川;高肖漢;;石墨相氮化碳改性技術(shù)的研究進(jìn)展[J];現(xiàn)代化工;2016年04期

5 覃艷蕾;丁耀彬;張廣麗;唐和清;;基于前驅(qū)體熱化學(xué)性質(zhì)調(diào)控g-C_3N_4的合成[J];武漢工程大學(xué)學(xué)報(bào);2016年02期

6 李鵬;王海燕;朱純;;金屬摻雜類石墨相氮化碳的理論研究[J];化學(xué)研究;2016年02期

7 張亞萍;張安玉;于濂清;董開拓;李焰;郝蘭眾;;AgX(Cl,Br)-TiO_2復(fù)合材料光電化學(xué)研究[J];無機(jī)材料學(xué)報(bào);2016年03期

8 李良;;硫酸胍制備多孔石墨型氮化碳及其光催化降解苯酚[J];工業(yè)催化;2016年02期

9 鄭云;王博;王心晨;;石墨相氮化碳納米管的合成及光催化產(chǎn)氫性能[J];影像科學(xué)與光化學(xué);2015年05期

10 韓嚴(yán)和;魯承豪;承啟;劉承情;李亦涵;陳家慶;;TiO_2-Pt/CuS光電材料的制備及性能研究[J];功能材料;2015年09期

,

本文編號(hào):2487513

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/2487513.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶52fec***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com