天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化學(xué)論文 >

浮游植物光合速率熒光動(dòng)力學(xué)測(cè)量技術(shù)研究

發(fā)布時(shí)間:2019-04-29 17:52
【摘要】:浮游植物作為水體中最主要的初級(jí)生產(chǎn)者、食物鏈源頭,是水體健康狀況指示劑,從根本上影響著全球生物地球化學(xué)循環(huán)與氣候變化?焖贉(zhǔn)確測(cè)量浮游植物光合速率對(duì)水生態(tài)環(huán)境監(jiān)測(cè)、水華和赤潮災(zāi)害預(yù)防、漁業(yè)資源評(píng)估、全球氣候變化預(yù)測(cè)等具有重要科學(xué)意義和應(yīng)用價(jià)值。黑白瓶、14C和18O示蹤等傳統(tǒng)光合速率測(cè)量方法需要“現(xiàn)場(chǎng)采樣-溫育培養(yǎng)-離線分析”,存在測(cè)量時(shí)間長(zhǎng)、手續(xù)繁瑣、效率低,難以滿足現(xiàn)場(chǎng)快速測(cè)量需求。葉綠素?zé)晒夥ㄊ且环N快速高效測(cè)量方法,但目前的葉綠素?zé)晒鉁y(cè)量技術(shù)主要集中在葉綠素濃度和光合作用參數(shù)測(cè)量方面,缺乏對(duì)光合速率的分析,且存在測(cè)量系統(tǒng)復(fù)雜、信噪比低等問題。針對(duì)浮游植物光合速率現(xiàn)場(chǎng)快速測(cè)量需求以及葉綠素?zé)晒鉁y(cè)量技術(shù)不足,論文研究了一種基于熒光動(dòng)力學(xué)的浮游植物光合速率測(cè)量技術(shù)。首先,研究并建立了浮游植物熒光動(dòng)力學(xué)曲線測(cè)量系統(tǒng)。在分析浮游植物熒光動(dòng)力學(xué)信號(hào)獲取中激發(fā)光干擾抑制、光合電子傳遞鏈阻塞位點(diǎn)的精確調(diào)控、熒光信號(hào)的快速高靈敏檢測(cè)等關(guān)鍵技術(shù)基礎(chǔ)上,從激發(fā)與發(fā)射光路、激發(fā)光強(qiáng)調(diào)控以及熒光信號(hào)檢測(cè)三個(gè)方面進(jìn)行測(cè)量系統(tǒng)總體分析和設(shè)計(jì)。研究了激發(fā)光強(qiáng)自適應(yīng)調(diào)控技術(shù),設(shè)計(jì)了可變光脈沖調(diào)控電路,實(shí)現(xiàn)了不同浮游植物測(cè)量過(guò)程中的光強(qiáng)自適應(yīng)調(diào)控,解決了光合電子傳遞鏈阻塞位點(diǎn)的精確調(diào)控問題;研究了快相熒光信號(hào)的快速獲取和弛豫熒光的高靈敏度檢測(cè)技術(shù),設(shè)計(jì)了低噪聲光電信號(hào)轉(zhuǎn)換與基于時(shí)間交替的多路采樣電路,實(shí)現(xiàn)了微秒量級(jí)快相熒光動(dòng)力學(xué)曲線精確采樣;針對(duì)弛豫熒光低信噪比微弱信號(hào),設(shè)計(jì)了基于同步積分技術(shù)的豫熒光高靈敏檢測(cè)電路。在此基礎(chǔ)上,建立了高靈敏和微秒量級(jí)的熒光動(dòng)力學(xué)測(cè)量系統(tǒng)。不同葉綠素濃度蛋白核小球藻測(cè)試結(jié)果表明,系統(tǒng)對(duì)準(zhǔn)確測(cè)量快相與弛豫熒光動(dòng)力曲線,對(duì)200μ叫快相熒光進(jìn)行高分辨率16位采樣,采樣率達(dá)1.50MHz; 0.125μg/L葉綠素濃度的浮游植物弛豫熒光信噪比達(dá)11.2dB以上。其次,研究了浮游植物光合速率熒光動(dòng)力學(xué)曲線反演方法;诮⒌母∮沃参餆晒鈩(dòng)力學(xué)測(cè)量系統(tǒng)獲得的快相與弛豫熒光動(dòng)力學(xué)曲線,研究了浮游植物光合作用參數(shù)反演算法,包括最大熒光產(chǎn)率滑動(dòng)窗口斜率判定方法,光化學(xué)量子效率和功能吸收截面線性最小二乘算法,以及質(zhì)體醌平均還原時(shí)間常數(shù)離散迭代算法,實(shí)現(xiàn)浮游植物光合作用參數(shù)的準(zhǔn)確反演;基于光合作用電子傳遞能流過(guò)程,以QA和PQ作為節(jié)點(diǎn),建立了基于光合作用參數(shù)的浮游植物光合速率分析方法,并利用Megard模型對(duì)光合速率的光響應(yīng)曲線進(jìn)行分析,進(jìn)一步獲得了表征光合速率的生物學(xué)參數(shù)最大光合速率PMax、初始斜率《、最大光強(qiáng)IMax。最后,開展了基于熒光動(dòng)力學(xué)的浮游植物光合速率對(duì)比分析實(shí)驗(yàn)。通過(guò)測(cè)量不同光照、營(yíng)養(yǎng)鹽和銅離子脅迫條件下蛋白核小球藻的熒光動(dòng)力學(xué)曲線,反演獲得光化學(xué)量子效率、功能吸收截面和質(zhì)體醌平均還原時(shí)間常數(shù)等光合作用參數(shù),其中光化學(xué)量子效率與Water-PAM熒光儀具有良好的一致性,相關(guān)系數(shù)達(dá)0.95以上,其它參數(shù)的變化規(guī)律也與理論分析相符;通過(guò)對(duì)DCMU、鹽濃度脅迫及不同光照、不同營(yíng)養(yǎng)鹽培養(yǎng)條件下蛋白核小球藻光合速率對(duì)比分析測(cè)試,結(jié)果表明熒光動(dòng)力學(xué)法測(cè)量得的光合電子傳遞通量與Chlorolab2液相氧電極測(cè)量的光合放氧量具有良好的一致性,最小線性相關(guān)系數(shù)R2分別為0.876、0.889、0.968、0.948。
[Abstract]:Phytoplankton as the main primary producer in the water body, the source of the food chain, is the indicator of the health status of the water body, which fundamentally affects the global biogeochemical cycle and the climate change. The rapid and accurate measurement of the photosynthetic rate of phytoplankton has important scientific significance and application value for water ecological environment monitoring, water bloom and red tide disaster prevention, fishery resource assessment and global climate change prediction. The conventional photosynthetic rate measurement methods such as black and white bottles, 14C and 18O tracers require "On-site sampling-incubation culture-off-line analysis". The measurement time is long, the procedures are complicated, the efficiency is low, and the rapid measurement requirements on the site are difficult to meet. Chlorophyll fluorescence method is a kind of rapid and efficient measuring method, but the present method of chlorophyll fluorescence measurement is mainly focused on the measurement of chlorophyll concentration and photosynthesis parameters, and the analysis of the photosynthetic rate is lacking, and the problems of complex measuring system, low signal-to-noise ratio and the like exist. In view of the demand of the on-site rapid measurement of the photosynthetic rate of phytoplankton and the shortage of the measurement of chlorophyll fluorescence, a technique for measuring the photosynthetic rate of phytoplankton based on the fluorescence dynamics was studied. First, a system for measuring the fluorescence of phytoplankton was studied and established. on the basis of analyzing the key technologies such as the excitation light interference suppression, the accurate control of the blocking site of the photosynthetic electron transport chain, the rapid and high-sensitivity detection of the fluorescent signal, and the like in the analysis of the fluorescence dynamic signal acquisition of the phytoplankton, And the overall analysis and design of the measurement system are carried out in three aspects of excitation light intensity regulation and fluorescence signal detection. The self-adaptive control technology of excitation light intensity was studied, and the variable light pulse control circuit was designed, and the self-adaptive control of light intensity in different phytoplankton measurement was realized, and the problem of precise control of the blocking site of the photosynthetic electron transport chain was solved. The rapid acquisition of fast-phase fluorescence signal and the high-sensitivity detection of the relaxation fluorescence are studied. The low-noise photoelectric signal conversion and the time-based multi-path sampling circuit are designed, and the accurate sampling of the fast-phase fluorescence dynamic curve on the order of microseconds is realized. In that light of the low signal-to-noise ratio weak signal of the relaxation fluorescence, a high-sensitivity detection circuit based on the synchronous integration technique is designed. On this basis, a high-sensitivity and microsecond-order fluorescence dynamic measurement system is established. The results of the test of Chlorella pyrenoidosa with different chlorophyll concentrations show that the system can measure the fast phase and the relaxation fluorescence power curve accurately, carry out high-resolution 16-bit sampling on 200 mu m fast-phase fluorescence, the sample rate is 1.50 MHz, and the signal-to-noise ratio of the phytoplankton with the concentration of 0.125. mu.g/ L is 11.2 dB or more. Secondly, the method of inversion of the photosynthetic rate of phytoplankton was studied. Based on the established fast phase and relaxation fluorescence dynamic curve obtained by a phytoplankton fluorescence dynamic measurement system, a method for determining the photosynthesis parameter of phytoplankton is studied, which comprises a method for judging the slope of the maximum fluorescence yield sliding window, The invention relates to a photochemical quantum efficiency and a function absorption cross-section linear least square algorithm, as well as an average reduction time constant discrete iterative algorithm of a plastid, to realize the accurate inversion of the photosynthesis parameters of the phytoplankton, The photosynthetic rate analysis method of phytoplankton was established based on the parameters of photosynthesis, and the light response curve of the photosynthetic rate was analyzed by the Meard model, and the maximum photosynthetic rate, Pmax, initial slope and maximum light intensity, were obtained. Finally, a comparative analysis of the photosynthetic rate of phytoplankton based on the fluorescence dynamics was carried out. by measuring the fluorescence dynamic curve of the protein nucleus chlorella under different illumination, nutrient salt and copper ion stress condition, the photosynthesis parameters such as the photochemical quantum efficiency, the function absorption cross section and the average reduction time constant of the plastid are obtained, in which the photochemical quantum efficiency and the water-PAM fluorescence instrument have good consistency, the correlation coefficient is more than 0.95, and the variation law of other parameters is consistent with the theoretical analysis; and through the treatment of the DCMU, the salt concentration stress and the different illumination, The photosynthetic rate of Chlorella pyrenoidosa under different nutrient culture conditions was compared and analyzed. The results showed that the photosynthetic electron transfer flux measured by the fluorescence method had good agreement with the measured photosynthetic oxygen content of the chlorolab2 liquid-phase oxygen electrode, and the minimum linear correlation coefficient (R2) was 0.876, 0.889, 0.968, and 0.948, respectively.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:Q945.11;O657.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王瓊;盧聰;范志平;李法云;;遼河流域太子河流域N、P和葉綠素a濃度空間分布及富營(yíng)養(yǎng)化[J];湖泊科學(xué);2017年02期

2 王壽兵;徐紫然;張潔;;大型湖庫(kù)富營(yíng)養(yǎng)化藍(lán)藻水華防控技術(shù)發(fā)展述評(píng)[J];水資源保護(hù);2016年04期

3 石朝毅;高先和;殷高方;周澤華;盧軍;胡學(xué)友;;基于可變光脈沖誘導(dǎo)熒光的浮游植物光合作用參數(shù)測(cè)量系統(tǒng)設(shè)計(jì)[J];激光與光電子學(xué)進(jìn)展;2016年07期

4 劉洋;胡佩茹;馬思三;葉金云;;實(shí)時(shí)熒光定量PCR方法檢測(cè)南太湖入湖口產(chǎn)毒微囊藻[J];湖泊科學(xué);2016年02期

5 李大命;張彤晴;唐晟凱;段翠蘭;楊俊虎;穆歡;劉小維;;洪澤湖有毒和無(wú)毒微囊藻豐度及其與環(huán)境因子之間的相關(guān)分析[J];環(huán)境科學(xué);2016年02期

6 伊菲恩·雷斯;程冠飛;;為什么藻華頻發(fā)?[J];中國(guó)三峽;2014年11期

7 石朝毅;張玉鈞;殷高方;趙南京;段靜波;邱曉晗;方麗;肖雪;劉文清;;快速光脈沖藻類光合作用測(cè)量方法的激發(fā)條件研究(英文)[J];光子學(xué)報(bào);2015年02期

8 莊文鋒;楊文月;楊猛;徐正進(jìn);;不同穗型水稻劍葉光合特性及葉綠素?zé)晒鈪?shù)的研究[J];中國(guó)農(nóng)學(xué)通報(bào);2014年09期

9 楊程;李鵬民;張子山;Vasilij Goltsev;高輝遠(yuǎn);;葉綠素延遲熒光的發(fā)生及其在光合作用研究中的應(yīng)用[J];植物生理學(xué)報(bào);2013年12期

10 李大命;陽(yáng)振;于洋;唐晟凱;張彤晴;周剛;;太湖春季和秋季藍(lán)藻光合作用活性研究[J];環(huán)境科學(xué)學(xué)報(bào);2013年11期

相關(guān)博士學(xué)位論文 前2條

1 張聿柏;石油烴對(duì)海洋微藻的毒性效應(yīng)及其機(jī)理研究[D];中國(guó)海洋大學(xué);2013年

2 劉晶;浮游植物光合作用活性原位測(cè)量方法與系統(tǒng)研制[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年

相關(guān)碩士學(xué)位論文 前4條

1 金松;海洋藻類災(zāi)害遙感探測(cè)及海洋初級(jí)生產(chǎn)力反演[D];上海海洋大學(xué);2016年

2 羅偉;環(huán)境因子對(duì)萱藻(Scytosiphon lomentaria)孢子附著、萌發(fā)、幼苗早期發(fā)育及附生藻類動(dòng)態(tài)變化的影響[D];中國(guó)海洋大學(xué);2015年

3 凌旌瑾;環(huán)境脅迫對(duì)蛋白核小球藻(Chlorella pyrenoidosa)生長(zhǎng)和光合作用的影響[D];華東師范大學(xué);2009年

4 吳守璇;光輻射對(duì)太湖浮游植物初級(jí)生產(chǎn)力的影響研究[D];暨南大學(xué);2005年

,

本文編號(hào):2468409

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/2468409.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f7b92***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com