多晶體材料微觀結(jié)構(gòu)演化的晶體相場法研究
[Abstract]:The micro-evolution behavior of real materials has always been an interesting research direction, especially the defect motion on a nanoscale scale. Because of the limitation of the equipment, people can only infer the behavior of the material by the pattern obtained from the experiment and the result of some data. But when the material structure or the environment of the research is very complex, computer simulation experiment is needed at this time. The crystal phase field (PFC,Phase-Field-Crystal) method is a kind of research method which can simulate the nano-scale structure of crystal. By determining the density field and minimizing the free energy function of the research object, the corresponding kinetic equations are combined. The evolution process of crystal materials at nanometer scale can be simulated. At present, it has developed into a mature research method for simulating nano-materials. Compared with the traditional phase-field method, the crystal phase-field method can describe the atomic-scale structure and the large diffusion time-scale. The metal materials used in engineering are usually polycrystals. In the process of material processing, polycrystals will be subjected to various effects, such as extrusion, corrosion, high temperature and so on, which directly affect the change of microstructure inside the material. So the research on plastic deformation of polycrystals has been paid more and more attention. In view of this, the PFC method will be used to study the grain boundary evolution process of pure material polycrystalline materials under the action of single, biaxial stress and dynamic and static loads. The dislocation motion, dislocation response and temperature, stress and strain rate on grain boundary will be investigated. The relationship between direction and stress form is studied, the evolution process of grain boundary movement is studied, the variation of internal distortion energy is analyzed, and the micro-mechanism of stress action on nano-polycrystalline materials is revealed. The conclusions are as follows: 1. PFC method is used to simulate the plastic deformation of polycrystals. The phenomena of grain rotation, grain annexation, grain boundary migration and so on are observed. The grain rotation occurs mainly between the two grains with smaller orientation difference, while the phenomenon of grain annexation occurs between the large grain and the small grain. 2, the change of temperature makes the grain boundary pre-melt in varying degrees. It is difficult to rotate the grain at low temperature, and the dislocation slip easily into the grain, which compensates the difference of grain orientation. When the temperature is higher, the grain boundary migration speed is faster, and it is easier to appear the phenomenon of grain annexation. 3, the direction of grain growth changes with the change of stress direction, and the grain growth tends to develop in the direction perpendicular to the pressure axis. The grain boundary tends to develop parallel or perpendicular to the pressure axis. 4. When the strain rate is increased, the velocity of grain boundary migration and dislocation movement becomes faster. Under the action of static biaxial stress, the polycrystalline material changes dramatically in the early stage, resulting in the emission and decomposition of dislocations. Compared with the evolution of the samples under dynamic biaxial stress, the static biaxial stress can form a higher dislocation density at the early stage.
【學位授予單位】:廣西大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O76
【參考文獻】
相關(guān)期刊論文 前10條
1 楊劍群;馬國亮;李興冀;劉超銘;劉海;;溫度和應(yīng)變速率耦合作用下納米晶Ni壓縮行為研究[J];物理學報;2015年13期
2 劉軍偉;王建峰;史武軍;段文暉;;第一性原理計算方法在拓撲材料研究中的應(yīng)用[J];科研信息化技術(shù)與應(yīng)用;2014年04期
3 高英俊;周文權(quán);鄧芊芊;羅志榮;林葵;黃創(chuàng)高;;晶體相場方法模擬高溫應(yīng)變作用的預(yù)熔化晶界的位錯運動[J];金屬學報;2014年07期
4 黃禮琳;華平;王玉玲;黃創(chuàng)高;高英俊;;凸曲率襯底外延生長界面演化的晶體相場模擬[J];廣西科學;2014年03期
5 馬禮敦;;X射線晶體學的百年輝煌[J];物理學進展;2014年02期
6 范巍;曾雉;;氧化鎂納米多晶的微結(jié)構(gòu)和磁性[J];物理學報;2014年04期
7 袁林;敬鵬;劉艷華;徐振海;單德彬;郭斌;;多晶銀納米線拉伸變形的分子動力學模擬研究[J];物理學報;2014年01期
8 鄒章雄;項金鐘;許思勇;;Hall-Petch關(guān)系的理論推導(dǎo)及其適用范圍討論[J];物理測試;2012年06期
9 陳成;陳錚;楊濤;張靜;;晶體相場模型的研究進展[J];材料導(dǎo)報;2012年09期
10 霍菲;梁軍浩;趙繼偉;;晶粒生長拓撲學的相場法模擬[J];熱加工工藝;2012年04期
相關(guān)會議論文 前1條
1 曲紹興;周昊飛;;納米孿晶界對金屬材料強韌性影響的原子尺度研究[A];中國計算力學大會'2010(CCCM2010)暨第八屆南方計算力學學術(shù)會議(SCCM8)論文集[C];2010年
相關(guān)博士學位論文 前8條
1 胡將將;納米晶Cu,Ni及Ni-Fe合金力學行為及其變形機制的研究[D];吉林大學;2015年
2 秦洪;多晶純鈦室溫下不同應(yīng)變速率塑性變形的孿生形變機制研究[D];重慶大學;2014年
3 韓雙;電沉積塊體納米晶Ni的壓縮力學行為及微觀結(jié)構(gòu)演化研究[D];吉林大學;2014年
4 羅志榮;金屬材料微觀組織結(jié)構(gòu)演化的相場法研究[D];廣西大學;2013年
5 于鳳榮;Bi_2Te_3納米晶塊體材料的制備及結(jié)構(gòu)和熱電性能研究[D];燕山大學;2012年
6 馬文;沖擊壓縮下納米多晶金屬塑性及相變機制的分子動力學研究[D];國防科學技術(shù)大學;2011年
7 吳艷青;多晶材料高溫大變形細觀力學行為研究[D];西北工業(yè)大學;2003年
8 張靜武;金屬塑性變形與斷裂的TEM/SEM原位研究[D];燕山大學;2002年
相關(guān)碩士學位論文 前5條
1 汪凱;多晶體材料加工的細觀塑性有限元模擬[D];昆明理工大學;2013年
2 張少義;晶體相場方法研究晶體外延生長界面結(jié)構(gòu)與位錯的遷移[D];廣西大學;2012年
3 張倩;等溫過程曲率驅(qū)動晶粒長大的元胞自動機模擬[D];東北大學;2012年
4 陳鋒;高應(yīng)變率和大變形對材料微晶化改性的影響之研究[D];寧波大學;2007年
5 楊昕昕;OA理論和DVM方法對Al、Ti、Rh和Ir的電子結(jié)構(gòu)和物理性質(zhì)的研究[D];中南大學;2002年
,本文編號:2447861
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2447861.html