基于化學(xué)勢(shì)的多相流晶格Boltzmann方法的研究
[Abstract]:The phenomenon of multi-phase flow in nature has a wide application in industrial and agricultural production, scientific research and daily life, and its phases involve surface phenomena, thermodynamic and fluid mechanics balance problems, and there are complex physical and chemical processes such as heat transfer, mass transfer and chemical reaction. These effects make the study of the multi-phase flow problem very complex, and therefore, the research on the multi-phase flow phenomenon has been a hot spot in the field of fluid mechanics. Computational Fluid Dynamics (CFD) is a subject of constant development in the long-term practice of fluid movement by means of numerical and discrete research, which has made great success in the study of complex fluid movement, including multi-phase flow. However, because the multi-phase flow often presents a very complex geometric interface, and with the severe interface topology deformation (such as the polymerization and splitting of the droplets, etc.), the conventional CFD method will encounter the bottleneck of the further study of the multi-phase flow, that is, the Navier-Stokes equations under the complex geometric boundary are not easy to solve, It is also very difficult to trace the interface with violent topological deformation. Lattice Boltzmann method (LBM), based on the molecular dynamics, is a special discrete form of the continuous Boltzmann equation, and belongs to the new mesoscopic method. In particular, it has outstanding performance in the research of multi-phase flow, and has been highly accepted by people. Compared with the traditional CFD method, at least the following advantages are:1. The algorithm is simple, and the complex Navier-Stokes equations need not be solved directly, but only a simple lattice Boltzmann equation is needed. It is easy to handle complex geometric boundary conditions, and does not need to track the interface explicitly, and the change of the interface is naturally contained in the simple evolution process;3. The evolution of the LBM is local, and is very suitable for high-performance parallel computing and the like. After nearly 30 years of development and improvement, the LBM has become a new and irreplaceable computational fluid dynamic method, which has taken an important position in the research of multi-phase flow and has become one of the main research methods. So far, the LBM multi-phase flow model, which has been widely accepted and widely popular and successfully applied, has a pseudo-potential model and a free-energy model, however, The two models and their subsequent improvements can not meet the Galileo invariance and the thermodynamic consistency. The pseudo-potential model does not have the thermodynamic consistency, and the free energy model can not satisfy the Galileo invariance. The model that does not have the thermodynamic consistency will not be able to accurately describe the thermodynamic behavior of the system, and the model that does not meet the Galileo invariance can not accurately describe the characteristics of the moving system. On the basis of calculating the non-ideal force with the aid of the free energy and the pressure tensor, a lattice Boltzmann multi-phase flow model based on the pressure tensor is proposed, which is called the pressure tensor model, EPL,112 (2015)44002). From the theoretical and numerical experiments, the new model is proved to have both thermodynamic consistency and Galileo invariance. The algorithm is simple and easy to realize, and the two-phase co-existence curve obtained by the simulation of one-stage phase change is better with the theory, and is expected to be further promoted and applied. Although the pressure tensor model has obvious advantages in both the theory and the numerical value, it has a good application prospect. However, this paper has found that the model has further improved and improved space in the in-depth study. First, through the pressure tensor may not be the best, more than the only effective way to calculate the non-ideal force, the free energy, chemical potential and entropy of the system can describe the macroscopic quantity of the thermodynamic behavior of the system, especially the chemical potential has a unique advantage when describing the phase equilibrium and the chemical balance; On the other hand, the fluid-solid wetting boundary condition of the constrained multi-phase flow system is difficult to express directly by the pressure tensor, and the effective density expression also has a certain complexity, and the chemical potential is used to describe the interaction between the solid phase and the liquid phase in the wetting. In this paper, the original pressure tensor model is explored and improved from the chemical potential, and a chemical potential-based lattice Boltzmann multi-phase flow model (the chemical potential model) is constructed by the derivation of a chemical potential-based non-ideal force calculation formula, which is also based on the chemical potential. A set of flow-solid wetting boundary conditions based on chemical potential is developed (for short, chemical potential wetting boundary conditions). Based on the theoretical and numerical experiments, the new model and the wetting boundary condition have the following advantages and characteristics:1. because of the improvement and perfection of the original pressure tensor model, the chemical potential model still has both the thermodynamic consistency and the Galileo invariance, and the chemical potential model and the wetting boundary condition are in a unified and self-consistent theory through the chemical potential, In that numerical calculation, the mutual coordination and share are achieved. The chemical potential model and the wetting boundary condition are more concise than the pressure tensor model algorithm, and through a typical van der waals fluid-level phase change simulation experiment, the new chemical potential model has different degrees of improvement in the calculation accuracy, the calculation efficiency and the stability, It fully shows that it also has a systematic and comprehensive advantage in the field of numerical value. Several commonly used non-ideal fluids (including van der waals, Peng-Robinson, Redlich-Kwang Soave and Carnahan-Starling fluid) and van der Waals droplet deformation simulation with different speeds show that the chemical potential model can well describe the two-phase co-existence of the non-ideal fluid, Galileo invariance is also exactly satisfied. The examples of the wetting phenomenon of the van der Waals droplet on the surface of the solid wall show that the realization and application of the chemical potential model and the wetting boundary condition are convenient and feasible. in that numerical experiment, it is found that the wetting contact angle is almost linear with the change of the chemical potential of the specified solid wall surface, so that the required contact angle is very simple by adjusting the surface chemical potential in the practical application, Therefore, the application of the chemical potential model and the wetting boundary condition to the surface wetting phenomenon has a sufficient advantage. Since the chemical potential is an important and universal macroscopic quantity for describing the thermodynamic system, the chemical potential model and the wetting boundary condition can be directly applied to the research of a multi-phase flow system with an electromagnetic field environment or a chemical reaction. The above advantages and characteristics show that the chemical potential model and the wetting boundary condition have a solid theoretical foundation and excellent numerical performance, and are expected to be widely promoted and applied in the field of multi-phase flow.
【學(xué)位授予單位】:廣西師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O641
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈志恒;馬宏文;陸慧林;宋廷鈺;李錚;;基于格子Boltzmann方法顆粒團(tuán)聚物曳力系數(shù)的數(shù)值模擬及應(yīng)用研究[J];石油化工;2012年05期
2 鄧敏藝,劉慕仁,孔令江;二維反應(yīng)擴(kuò)散方程的格子Boltzmann方法模擬[J];廣西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年01期
3 田智威;鄒春;劉紅娟;陳勝;柳朝暉;鄭楚光;;格子Boltzmann方法模擬層流對(duì)沖預(yù)混火焰[J];燃燒科學(xué)與技術(shù);2005年06期
4 張磊;姚軍;孫海;孫致學(xué);;利用格子Boltzmann方法計(jì)算頁(yè)巖滲透率[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期
5 戰(zhàn)洪仁;周淑娟;路海燕;高成峰;;利用格子Boltzmann方法預(yù)測(cè)縮放管內(nèi)的阻力系數(shù)[J];沈陽(yáng)化工學(xué)院學(xué)報(bào);2008年04期
6 何瑩松;;基于格子Boltzmann方法的多孔介質(zhì)流體滲流模擬[J];科技通報(bào);2013年04期
7 劉邱祖;寇子明;韓振南;高貴軍;;基于格子Boltzmann方法的液滴沿固壁鋪展動(dòng)態(tài)過程模擬[J];物理學(xué)報(bào);2013年23期
8 張?jiān)?王小偉;葛蔚;楊朝合;;多松弛時(shí)間格子Boltzmann方法在GPU上的實(shí)現(xiàn)[J];計(jì)算機(jī)與應(yīng)用化學(xué);2011年03期
9 徐世英;衛(wèi)玉敏;吳春光;馮金朝;;一維Tyson反應(yīng)擴(kuò)散系統(tǒng)的格子Boltzmann方法模擬[J];計(jì)算機(jī)與應(yīng)用化學(xué);2008年05期
10 狄勤豐;余祖斌;顧春元;吳非;王新亮;;納米顆粒吸附微管道水流特性的格子Boltzmann方法模擬[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
相關(guān)會(huì)議論文 前7條
1 梁功有;曾忠;張永祥;張良奇;姚麗萍;邱周華;;封閉方腔內(nèi)自然對(duì)流的格子Boltzmann方法模擬[A];重慶力學(xué)學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集[C];2009年
2 鄧義求;唐政;董宇紅;;基于格子Boltzmann方法對(duì)氣動(dòng)聲學(xué)的應(yīng)用研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
3 唐政;鄧義求;董宇紅;;基于格子Boltzmann方法對(duì)多孔介質(zhì)壁湍流減阻減噪機(jī)理的研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
4 鄧林;張?jiān)?解孝林;周華民;;共混高聚物剪切粘度的格子Boltzmann方法模擬[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第14分會(huì):流變學(xué)[C];2014年
5 王星;謝華;;基于浸入邊界-格子Boltzmann方法的仿生機(jī)器魚的數(shù)值模擬[A];第十三屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十六屆全國(guó)水動(dòng)力學(xué)研討會(huì)論文集——C計(jì)算流體力學(xué)[C];2014年
6 戴傳山;劉學(xué)章;;格子Boltzmann方法用于多孔介質(zhì)與自由流體開口腔體內(nèi)自然對(duì)流的數(shù)值模擬研究[A];中國(guó)地球物理學(xué)會(huì)第二十七屆年會(huì)論文集[C];2011年
7 李學(xué)民;曹俊興;王興建;;利用格子Boltzmann方法模擬孔隙介質(zhì)中的流體滲流[A];中國(guó)地球物理學(xué)會(huì)年刊2002——中國(guó)地球物理學(xué)會(huì)第十八屆年會(huì)論文集[C];2002年
相關(guān)博士學(xué)位論文 前10條
1 楊鑫;基于格子Boltzmann方法的橢球粒子在簡(jiǎn)單流體中的運(yùn)動(dòng)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
2 龔帥;親疏水性對(duì)池沸騰傳熱影響的格子Boltzmann方法研究[D];上海交通大學(xué);2015年
3 任俊杰;基于格子Boltzmann方法的頁(yè)巖氣微觀流動(dòng)機(jī)理研究[D];西南石油大學(xué);2015年
4 譚玲燕;用格子Boltzmann方法模擬圓柱的攪動(dòng)流動(dòng)及減阻[D];吉林大學(xué);2011年
5 柴振華;基于格子Boltzmann方法的非線性滲流研究[D];華中科技大學(xué);2009年
6 丁麗霞;用于模擬粘性流體流動(dòng)的格子Boltzmann方法[D];吉林大學(xué);2009年
7 張婷;多孔介質(zhì)內(nèi)多組分非均相反應(yīng)流的格子Boltzmann方法研究[D];華中科技大學(xué);2012年
8 魯建華;基于格子Boltzmann方法的多孔介質(zhì)內(nèi)流動(dòng)與傳熱的微觀模擬[D];華中科技大學(xué);2009年
9 張文歡;基于格子Boltzmann方法的撞擊流流動(dòng)不穩(wěn)定性的數(shù)值研究[D];華中科技大學(xué);2013年
10 宋香霞;用格子Boltzmann方法分析燃料電池陽(yáng)極的三維結(jié)構(gòu)和性能[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 蘭中周;一類非線性偏微分方程的格子Boltzmann方法[D];東華理工大學(xué);2014年
2 李冬杰;基于格子Boltzmann方法的顱內(nèi)動(dòng)脈瘤直血管和彎曲血管三維數(shù)值研究[D];華中科技大學(xué);2014年
3 年玉澤;基于Boltzmann方法的植被發(fā)育斜坡土體大孔隙滲流研究[D];昆明理工大學(xué);2016年
4 姜繼鼎;基于格子Boltzmann方法的活性粒子布朗運(yùn)動(dòng)的數(shù)值模擬研究[D];西安建筑科技大學(xué);2016年
5 史文秋;基于格子Boltzmann方法的細(xì)微通道內(nèi)脈沖加熱下沸騰相變的研究[D];華北電力大學(xué)(北京);2016年
6 李蓉;基于晶格Boltzmann方法的三維旋轉(zhuǎn)流體中二次流研究[D];廣西師范大學(xué);2016年
7 王特;求解含跳系數(shù)的單溫輻射擴(kuò)散方程的格子Boltzmann方法[D];湘潭大學(xué);2016年
8 楊超;基于格子Boltzmann方法的微尺度氣體流動(dòng)模擬[D];東北大學(xué);2013年
9 孫爍然;利用非均勻格子Boltzmann方法研究支架對(duì)顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué)的影響[D];華中科技大學(xué);2015年
10 陳慧;基于晶格Boltzmann方法研究接觸角的測(cè)量和遲滯[D];廣西師范大學(xué);2017年
,本文編號(hào):2439861
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2439861.html