天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化學(xué)論文 >

基于化學(xué)勢(shì)的多相流晶格Boltzmann方法的研究

發(fā)布時(shí)間:2019-03-14 09:29
【摘要】:自然界普遍存在的多相流現(xiàn)象在工農(nóng)業(yè)生產(chǎn)、科學(xué)研究和日常生活中具有廣泛的應(yīng)用,它的相間涉及表面現(xiàn)象、熱力學(xué)與流體力學(xué)的平衡問題,存在傳熱、傳質(zhì)和化學(xué)反應(yīng)等復(fù)雜的物理化學(xué)過程,這些效應(yīng)使得多相流問題的研究變得極為復(fù)雜,也正因此,關(guān)于多相流現(xiàn)象的研究一直是流體力學(xué)領(lǐng)域的熱點(diǎn)。計(jì)算流體動(dòng)力學(xué)(Computational Fluid Dynamics,CFD)是人們?cè)诮柚鷶?shù)值與離散的方研究流體運(yùn)動(dòng)的長(zhǎng)期實(shí)踐中不斷發(fā)展形成的一門學(xué)科,它在研究包括多相流在內(nèi)的復(fù)雜流體運(yùn)動(dòng)方面取得了巨大的成功。然而,由于多相流常常呈現(xiàn)十分復(fù)雜的幾何界面,且伴隨著劇烈的界面拓?fù)湫巫?如液滴的聚合與分裂等),傳統(tǒng)的CFD方法對(duì)多相流的進(jìn)一步研究將遭遇瓶頸,即復(fù)雜幾何邊界下的Navier-Stokes方程不易求解,對(duì)發(fā)生劇烈拓?fù)湫巫兊慕缑孀粉櫼卜浅@щy。晶格Boltzmann方法(Lattice Boltzmann method,LBM)以分子動(dòng)力學(xué)為基礎(chǔ),是連續(xù)Boltzmann方程的一種特殊離散格式,屬于新興的介觀方法,兼有連續(xù)理論和微觀方法的優(yōu)勢(shì),在研究復(fù)雜流體運(yùn)動(dòng)方面取得了顯著成功,尤其是在多相流研究方面具有突出的表現(xiàn),已經(jīng)得到了人們的高度認(rèn)同。與傳統(tǒng)的CFD方法相比至少具有如下優(yōu)勢(shì):1.算法簡(jiǎn)單,無需直接求解復(fù)雜的Navier-Stokes方程而僅需求解簡(jiǎn)單的晶格Boltzmann方程;2.易于處理復(fù)雜的幾何邊界條件,也無需顯式地追蹤界面,界面的變化自然地蘊(yùn)含于簡(jiǎn)單的演化過程;3.LBM的演化具有局域性,非常適合于高性能并行計(jì)算等。經(jīng)過近30年的發(fā)展和完善,LBM已經(jīng)成為了一種新的、不可替代的計(jì)算流體動(dòng)力學(xué)方法,在研究多相流方面占據(jù)了重要地位,成為了主流的研究方法之一。迄今為止,已經(jīng)得到人們共同認(rèn)可、并得到廣泛流行與成功應(yīng)用的LBM多相流模型主要有偽勢(shì)模型和自由能模型,然而,這兩個(gè)模型及其后續(xù)的改進(jìn)均不能同時(shí)滿足伽利略不變性和熱力學(xué)一致性——偽勢(shì)模型不具有熱力學(xué)一致性,而自由能模型則不能滿足伽利略不變性。不具有熱力學(xué)一致性的模型將難以準(zhǔn)確地刻畫系統(tǒng)的熱力學(xué)行為,而不滿足伽利略不變性的模型則無法精確地描述運(yùn)動(dòng)系統(tǒng)的特性。本人參加的課題小組圍繞這一問題深入分析了這兩個(gè)模型的原理,在借助自由能和壓力張量計(jì)算非理想力的基礎(chǔ)上,提出了一種基于壓力張量的晶格Boltzmann多相流模型(簡(jiǎn)稱:壓力張量模型,EPL,112(2015)44002),并從理論和數(shù)值實(shí)驗(yàn)的角度驗(yàn)證了新模型既具有熱力學(xué)一致性又滿足伽利略不變性,其算法簡(jiǎn)單易于實(shí)現(xiàn),且模擬一級(jí)相變所得的兩相共存曲線與理論吻合更好,有望獲得進(jìn)一步地推廣和應(yīng)用。盡管壓力張量模型無論在理論上,還是數(shù)值上都有明顯優(yōu)勢(shì),也有很好的推廣應(yīng)用前景,然而,本文在深入地研究中發(fā)現(xiàn)該模型尚有進(jìn)一步改進(jìn)與提升的空間。首先通過壓力張量或許并非最佳、更非唯一計(jì)算非理想力的有效途徑,系統(tǒng)的自由能、化學(xué)勢(shì)和熵等均是能很好描述系統(tǒng)熱力學(xué)行為的宏觀量,尤其是化學(xué)勢(shì)在描述相平衡和化學(xué)平衡時(shí)具有獨(dú)特的優(yōu)勢(shì);另一方面,受限多相流系統(tǒng)的流固潤(rùn)濕邊界條件采用壓力張量難以直接表述,采用有效密度表達(dá)也具有一定復(fù)雜性,采用化學(xué)勢(shì)描述潤(rùn)濕中固相與液相的相互作用可能更方便。于是,本文從化學(xué)勢(shì)入手對(duì)原壓力張量模型進(jìn)行了探索與改進(jìn),通過推導(dǎo)獲得的基于化學(xué)勢(shì)的非理想力計(jì)算公式,構(gòu)建了基于化學(xué)勢(shì)的晶格Boltzmann多相流模型(簡(jiǎn)稱:化學(xué)勢(shì)模型),同樣由化學(xué)勢(shì)出發(fā),發(fā)展了一套基于化學(xué)勢(shì)的流固潤(rùn)濕邊界條件(簡(jiǎn)稱:化學(xué)勢(shì)潤(rùn)濕邊界條件)。經(jīng)理論和數(shù)值實(shí)驗(yàn)檢驗(yàn),本文提出的新模型與潤(rùn)濕邊界條件主要具有如下優(yōu)勢(shì)與特色:1.由于是對(duì)原壓力張量模型的改進(jìn)與完善,化學(xué)勢(shì)模型仍然既具有熱力學(xué)一致性同時(shí)又滿足伽利略不變性,且化學(xué)勢(shì)模型與潤(rùn)濕邊界條件通過化學(xué)勢(shì)在理論上達(dá)到了統(tǒng)一與自洽,在數(shù)值計(jì)算上達(dá)到了相互協(xié)調(diào)與共享。2.化學(xué)勢(shì)模型與潤(rùn)濕邊界條件較之壓力張量模型算法更簡(jiǎn)潔,通過典型的van der waals流體一級(jí)相變模擬實(shí)驗(yàn)表明:新的化學(xué)勢(shì)模型在計(jì)算精度、計(jì)算效率和穩(wěn)定性上均有不同程度地提升,充分說明其在數(shù)值方面也具有系統(tǒng)的、全面的優(yōu)勢(shì)。3.幾種常用非理想流體(包括:van der waals,Peng-Robinson,Redlich-Kwong Soave和Carnahan-Starling流體)一級(jí)相變和具有不同速度的van der Waals液滴變形模擬表明,化學(xué)勢(shì)模型數(shù)值上能很好地描述非理想流體的兩相共存現(xiàn)象,也準(zhǔn)確地滿足伽利略不變性。4.初步應(yīng)用于固壁表面van der Waals液滴潤(rùn)濕現(xiàn)象的實(shí)例充分說明,化學(xué)勢(shì)模型與潤(rùn)濕邊界條件的實(shí)現(xiàn)與應(yīng)用方便、可行。數(shù)值實(shí)驗(yàn)中發(fā)現(xiàn)潤(rùn)濕接觸角隨指定的固壁表面化學(xué)勢(shì)變化幾乎是線性的,使得實(shí)際應(yīng)用中通過調(diào)整表面化學(xué)勢(shì)以獲得所需要的接觸角變得十分簡(jiǎn)單,因此化學(xué)勢(shì)模型與潤(rùn)濕邊界條件應(yīng)用于表面潤(rùn)濕現(xiàn)象的研究具有足夠的優(yōu)勢(shì)。5.由于化學(xué)勢(shì)是描述熱力學(xué)系統(tǒng)的一個(gè)重要而又普適的宏觀量,因此化學(xué)勢(shì)模型及潤(rùn)濕邊界條件能夠直接推廣應(yīng)用于具有電磁場(chǎng)環(huán)境或存在化學(xué)反應(yīng)的多相流系統(tǒng)的研究。以上優(yōu)勢(shì)與特色展現(xiàn)了化學(xué)勢(shì)模型與潤(rùn)濕邊界條件具有較堅(jiān)實(shí)的理論基礎(chǔ)和出色的數(shù)值性能,有望在多相流領(lǐng)域中得到普遍地推廣與應(yīng)用。
[Abstract]:The phenomenon of multi-phase flow in nature has a wide application in industrial and agricultural production, scientific research and daily life, and its phases involve surface phenomena, thermodynamic and fluid mechanics balance problems, and there are complex physical and chemical processes such as heat transfer, mass transfer and chemical reaction. These effects make the study of the multi-phase flow problem very complex, and therefore, the research on the multi-phase flow phenomenon has been a hot spot in the field of fluid mechanics. Computational Fluid Dynamics (CFD) is a subject of constant development in the long-term practice of fluid movement by means of numerical and discrete research, which has made great success in the study of complex fluid movement, including multi-phase flow. However, because the multi-phase flow often presents a very complex geometric interface, and with the severe interface topology deformation (such as the polymerization and splitting of the droplets, etc.), the conventional CFD method will encounter the bottleneck of the further study of the multi-phase flow, that is, the Navier-Stokes equations under the complex geometric boundary are not easy to solve, It is also very difficult to trace the interface with violent topological deformation. Lattice Boltzmann method (LBM), based on the molecular dynamics, is a special discrete form of the continuous Boltzmann equation, and belongs to the new mesoscopic method. In particular, it has outstanding performance in the research of multi-phase flow, and has been highly accepted by people. Compared with the traditional CFD method, at least the following advantages are:1. The algorithm is simple, and the complex Navier-Stokes equations need not be solved directly, but only a simple lattice Boltzmann equation is needed. It is easy to handle complex geometric boundary conditions, and does not need to track the interface explicitly, and the change of the interface is naturally contained in the simple evolution process;3. The evolution of the LBM is local, and is very suitable for high-performance parallel computing and the like. After nearly 30 years of development and improvement, the LBM has become a new and irreplaceable computational fluid dynamic method, which has taken an important position in the research of multi-phase flow and has become one of the main research methods. So far, the LBM multi-phase flow model, which has been widely accepted and widely popular and successfully applied, has a pseudo-potential model and a free-energy model, however, The two models and their subsequent improvements can not meet the Galileo invariance and the thermodynamic consistency. The pseudo-potential model does not have the thermodynamic consistency, and the free energy model can not satisfy the Galileo invariance. The model that does not have the thermodynamic consistency will not be able to accurately describe the thermodynamic behavior of the system, and the model that does not meet the Galileo invariance can not accurately describe the characteristics of the moving system. On the basis of calculating the non-ideal force with the aid of the free energy and the pressure tensor, a lattice Boltzmann multi-phase flow model based on the pressure tensor is proposed, which is called the pressure tensor model, EPL,112 (2015)44002). From the theoretical and numerical experiments, the new model is proved to have both thermodynamic consistency and Galileo invariance. The algorithm is simple and easy to realize, and the two-phase co-existence curve obtained by the simulation of one-stage phase change is better with the theory, and is expected to be further promoted and applied. Although the pressure tensor model has obvious advantages in both the theory and the numerical value, it has a good application prospect. However, this paper has found that the model has further improved and improved space in the in-depth study. First, through the pressure tensor may not be the best, more than the only effective way to calculate the non-ideal force, the free energy, chemical potential and entropy of the system can describe the macroscopic quantity of the thermodynamic behavior of the system, especially the chemical potential has a unique advantage when describing the phase equilibrium and the chemical balance; On the other hand, the fluid-solid wetting boundary condition of the constrained multi-phase flow system is difficult to express directly by the pressure tensor, and the effective density expression also has a certain complexity, and the chemical potential is used to describe the interaction between the solid phase and the liquid phase in the wetting. In this paper, the original pressure tensor model is explored and improved from the chemical potential, and a chemical potential-based lattice Boltzmann multi-phase flow model (the chemical potential model) is constructed by the derivation of a chemical potential-based non-ideal force calculation formula, which is also based on the chemical potential. A set of flow-solid wetting boundary conditions based on chemical potential is developed (for short, chemical potential wetting boundary conditions). Based on the theoretical and numerical experiments, the new model and the wetting boundary condition have the following advantages and characteristics:1. because of the improvement and perfection of the original pressure tensor model, the chemical potential model still has both the thermodynamic consistency and the Galileo invariance, and the chemical potential model and the wetting boundary condition are in a unified and self-consistent theory through the chemical potential, In that numerical calculation, the mutual coordination and share are achieved. The chemical potential model and the wetting boundary condition are more concise than the pressure tensor model algorithm, and through a typical van der waals fluid-level phase change simulation experiment, the new chemical potential model has different degrees of improvement in the calculation accuracy, the calculation efficiency and the stability, It fully shows that it also has a systematic and comprehensive advantage in the field of numerical value. Several commonly used non-ideal fluids (including van der waals, Peng-Robinson, Redlich-Kwang Soave and Carnahan-Starling fluid) and van der Waals droplet deformation simulation with different speeds show that the chemical potential model can well describe the two-phase co-existence of the non-ideal fluid, Galileo invariance is also exactly satisfied. The examples of the wetting phenomenon of the van der Waals droplet on the surface of the solid wall show that the realization and application of the chemical potential model and the wetting boundary condition are convenient and feasible. in that numerical experiment, it is found that the wetting contact angle is almost linear with the change of the chemical potential of the specified solid wall surface, so that the required contact angle is very simple by adjusting the surface chemical potential in the practical application, Therefore, the application of the chemical potential model and the wetting boundary condition to the surface wetting phenomenon has a sufficient advantage. Since the chemical potential is an important and universal macroscopic quantity for describing the thermodynamic system, the chemical potential model and the wetting boundary condition can be directly applied to the research of a multi-phase flow system with an electromagnetic field environment or a chemical reaction. The above advantages and characteristics show that the chemical potential model and the wetting boundary condition have a solid theoretical foundation and excellent numerical performance, and are expected to be widely promoted and applied in the field of multi-phase flow.
【學(xué)位授予單位】:廣西師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O641

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 沈志恒;馬宏文;陸慧林;宋廷鈺;李錚;;基于格子Boltzmann方法顆粒團(tuán)聚物曳力系數(shù)的數(shù)值模擬及應(yīng)用研究[J];石油化工;2012年05期

2 鄧敏藝,劉慕仁,孔令江;二維反應(yīng)擴(kuò)散方程的格子Boltzmann方法模擬[J];廣西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年01期

3 田智威;鄒春;劉紅娟;陳勝;柳朝暉;鄭楚光;;格子Boltzmann方法模擬層流對(duì)沖預(yù)混火焰[J];燃燒科學(xué)與技術(shù);2005年06期

4 張磊;姚軍;孫海;孫致學(xué);;利用格子Boltzmann方法計(jì)算頁(yè)巖滲透率[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期

5 戰(zhàn)洪仁;周淑娟;路海燕;高成峰;;利用格子Boltzmann方法預(yù)測(cè)縮放管內(nèi)的阻力系數(shù)[J];沈陽(yáng)化工學(xué)院學(xué)報(bào);2008年04期

6 何瑩松;;基于格子Boltzmann方法的多孔介質(zhì)流體滲流模擬[J];科技通報(bào);2013年04期

7 劉邱祖;寇子明;韓振南;高貴軍;;基于格子Boltzmann方法的液滴沿固壁鋪展動(dòng)態(tài)過程模擬[J];物理學(xué)報(bào);2013年23期

8 張?jiān)?王小偉;葛蔚;楊朝合;;多松弛時(shí)間格子Boltzmann方法在GPU上的實(shí)現(xiàn)[J];計(jì)算機(jī)與應(yīng)用化學(xué);2011年03期

9 徐世英;衛(wèi)玉敏;吳春光;馮金朝;;一維Tyson反應(yīng)擴(kuò)散系統(tǒng)的格子Boltzmann方法模擬[J];計(jì)算機(jī)與應(yīng)用化學(xué);2008年05期

10 狄勤豐;余祖斌;顧春元;吳非;王新亮;;納米顆粒吸附微管道水流特性的格子Boltzmann方法模擬[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期

相關(guān)會(huì)議論文 前7條

1 梁功有;曾忠;張永祥;張良奇;姚麗萍;邱周華;;封閉方腔內(nèi)自然對(duì)流的格子Boltzmann方法模擬[A];重慶力學(xué)學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集[C];2009年

2 鄧義求;唐政;董宇紅;;基于格子Boltzmann方法對(duì)氣動(dòng)聲學(xué)的應(yīng)用研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年

3 唐政;鄧義求;董宇紅;;基于格子Boltzmann方法對(duì)多孔介質(zhì)壁湍流減阻減噪機(jī)理的研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年

4 鄧林;張?jiān)?解孝林;周華民;;共混高聚物剪切粘度的格子Boltzmann方法模擬[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第14分會(huì):流變學(xué)[C];2014年

5 王星;謝華;;基于浸入邊界-格子Boltzmann方法的仿生機(jī)器魚的數(shù)值模擬[A];第十三屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十六屆全國(guó)水動(dòng)力學(xué)研討會(huì)論文集——C計(jì)算流體力學(xué)[C];2014年

6 戴傳山;劉學(xué)章;;格子Boltzmann方法用于多孔介質(zhì)與自由流體開口腔體內(nèi)自然對(duì)流的數(shù)值模擬研究[A];中國(guó)地球物理學(xué)會(huì)第二十七屆年會(huì)論文集[C];2011年

7 李學(xué)民;曹俊興;王興建;;利用格子Boltzmann方法模擬孔隙介質(zhì)中的流體滲流[A];中國(guó)地球物理學(xué)會(huì)年刊2002——中國(guó)地球物理學(xué)會(huì)第十八屆年會(huì)論文集[C];2002年

相關(guān)博士學(xué)位論文 前10條

1 楊鑫;基于格子Boltzmann方法的橢球粒子在簡(jiǎn)單流體中的運(yùn)動(dòng)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年

2 龔帥;親疏水性對(duì)池沸騰傳熱影響的格子Boltzmann方法研究[D];上海交通大學(xué);2015年

3 任俊杰;基于格子Boltzmann方法的頁(yè)巖氣微觀流動(dòng)機(jī)理研究[D];西南石油大學(xué);2015年

4 譚玲燕;用格子Boltzmann方法模擬圓柱的攪動(dòng)流動(dòng)及減阻[D];吉林大學(xué);2011年

5 柴振華;基于格子Boltzmann方法的非線性滲流研究[D];華中科技大學(xué);2009年

6 丁麗霞;用于模擬粘性流體流動(dòng)的格子Boltzmann方法[D];吉林大學(xué);2009年

7 張婷;多孔介質(zhì)內(nèi)多組分非均相反應(yīng)流的格子Boltzmann方法研究[D];華中科技大學(xué);2012年

8 魯建華;基于格子Boltzmann方法的多孔介質(zhì)內(nèi)流動(dòng)與傳熱的微觀模擬[D];華中科技大學(xué);2009年

9 張文歡;基于格子Boltzmann方法的撞擊流流動(dòng)不穩(wěn)定性的數(shù)值研究[D];華中科技大學(xué);2013年

10 宋香霞;用格子Boltzmann方法分析燃料電池陽(yáng)極的三維結(jié)構(gòu)和性能[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 蘭中周;一類非線性偏微分方程的格子Boltzmann方法[D];東華理工大學(xué);2014年

2 李冬杰;基于格子Boltzmann方法的顱內(nèi)動(dòng)脈瘤直血管和彎曲血管三維數(shù)值研究[D];華中科技大學(xué);2014年

3 年玉澤;基于Boltzmann方法的植被發(fā)育斜坡土體大孔隙滲流研究[D];昆明理工大學(xué);2016年

4 姜繼鼎;基于格子Boltzmann方法的活性粒子布朗運(yùn)動(dòng)的數(shù)值模擬研究[D];西安建筑科技大學(xué);2016年

5 史文秋;基于格子Boltzmann方法的細(xì)微通道內(nèi)脈沖加熱下沸騰相變的研究[D];華北電力大學(xué)(北京);2016年

6 李蓉;基于晶格Boltzmann方法的三維旋轉(zhuǎn)流體中二次流研究[D];廣西師范大學(xué);2016年

7 王特;求解含跳系數(shù)的單溫輻射擴(kuò)散方程的格子Boltzmann方法[D];湘潭大學(xué);2016年

8 楊超;基于格子Boltzmann方法的微尺度氣體流動(dòng)模擬[D];東北大學(xué);2013年

9 孫爍然;利用非均勻格子Boltzmann方法研究支架對(duì)顱內(nèi)動(dòng)脈瘤血流動(dòng)力學(xué)的影響[D];華中科技大學(xué);2015年

10 陳慧;基于晶格Boltzmann方法研究接觸角的測(cè)量和遲滯[D];廣西師范大學(xué);2017年

,

本文編號(hào):2439861

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/2439861.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c030b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com