超高分子量聚乙烯輻射效應(yīng)與改性研究
[Abstract]:The ultra-high molecular weight polyethylene (UHMWPE) has the advantages of simple chemical structure, outstanding biocompatibility, corrosion resistance, abrasion resistance and comprehensive performance, and is widely applied to the fields of medical treatment, fishery, protection, engineering and the like. The UHMWPE also has some poor properties, such as low surface energy, poor creep resistance, low temperature resistance, and increased wear resistance, which limits its application in the composite and engineering fields. Therefore, it is of great significance to improve the surface properties, improve the creep resistance and wear resistance by the chemical or physical method. The radiation modification is a method for effectively changing the properties of the high-molecular material. In this paper, the radiation oxidation, grafting and cross-linking of UHMWPE are studied in detail by the radiation effect of UHMWPE, and the wettability of the surface of the UHMWPE is improved by radiation oxidation or radiation grafting. The anti-creep and wear resistance of UHMWPE were improved by radiation cross-linking, and the mechanical properties of UHMWPE were improved by co-mixed radiation-modified multi-wall carbon nanotubes (MWCNTs). The specific research contents and results are as follows: (1) The radiation oxidation of UHMWPE powder is irradiated by X-ray and electron beam (EB) in air, and the chemical structure, wettability and thermal stability of the powder after radiation irradiation are studied in detail. The effect of absorbed dose and dose rate on the structure and properties of the material was compared, and the degree of oxidative cracking was calculated. The results show that the degradation of UHMWPE powder in air is dominated by X-ray/ EB irradiation, and the absorbed dose and dose rate have a significant effect on the degree of oxidative cleavage. In addition, the degree of oxidative cracking induced by low dose rate irradiation can be estimated according to the rate of oxygen diffusion and dose rate. Although the UHMWPE powder is subjected to high-dose irradiation, the oxidative cracking is severe, but the thermal stability and the wettability change are small. The effect of simple radiation oxidation on the surface properties of UHMWPE is not great. (2) The UHMWPE powder/ film pre-radiation grafted acrylic acid (AA) was grafted with a pre-radiation grafting method, and the X-ray irradiated UHMWPE powder/ film was reacted in a 1 wt% AA solution, and a small amount of AA was grafted to improve its hydrophilicity. The chemical structure and surface wettability of UHMWPE powder/ film under X-ray irradiation, grafting AA, sodium hydroxide (NaOH) and post-treatment were studied in detail. The results show that the surface of UHMWPE powder/ film is grafted with AA, and the powder sample is more beneficial to the grafting reaction, and the surface wettability of the sample after the grafting of a small amount of AA is obviously improved, and the wettability is further improved in the neutralization treatment. The powder sample of 6 wt% AA was grafted and dispersed in an aqueous solution after neutralization with NaOH to show good hydrophilicity. Finally, a hydrophilic UHMWPE powder was prepared by grafting a small amount of AA. (3) The cross-linked UHMWPE sheet was prepared by X-ray irradiation and vacuum annealing, and the changes of gel content, crystallinity, creep and mechanical properties of the cross-linked UHMWPE were studied in detail. The results show that the gel content, crystallinity, creep resistance and mechanical properties of UHMWPE sheet after radiation cross-linking are improved greatly, and the mechanical properties are improved obviously. The 300 kGy radiation cross-linked UHMWPE sheet is still in good shape after being stretched for 4 h under the condition of 270 擄 C and 0. 06MPa. The Young's modulus is also increased to 1400 MPa from the original UHMWPE sheet to 1400 MPa, and the increase is close to 250%. in addition, that increase of the degree of cross-linking of the anneal treatment facilitates the creep and modulus of the sheet. Finally, UHMWPE plates with good creep resistance were prepared by radiation crosslinking. (4) The friction behavior of UHMWPE/ X-UHMWPE composites was investigated by radiation cross-linking and blending. The composite materials were prepared by adding cross-linked UHMWPE (X-UHMWPE) to conventional UHMWPE, and the properties of the X-UHMWPE and the friction behavior of the composites were studied in detail. The results show that after the radiation cross-linking of UHMWPE powder, the processing property is decreased, and the sample with high dose irradiation is difficult to melt; a small amount of X-UHMWPE is added to the UHMWPE, so that the comprehensive performance of the composite material can be greatly improved, and the wear resistance is greatly improved and the ductility is maintained. such as the addition of 25 wt.% of the 150 kGy radiation cross-linked x-uhmwpe to the composite prepared in conventional uhmwpe, the wear resistance was increased by 130% and the tensile strength of 90% and the ductility of 70% were maintained with respect to the original uhmwpe. (5) The mechanical behavior of UHMWPE/ MWCNTs composite material was studied by X-ray irradiation and blending, and the MWCNTs were added to UHMWPE to prepare the composite material. The structure of MWCNTs and the change of the mechanical properties of the composite were studied in detail. The results show that the surface chemical structure of MWCNTs is changed by X-ray irradiation, the defect is increased, but the morphology is small, and the addition of small amount of radiation-modified MWCNTs can effectively improve the mechanical properties of the composite material, such as the addition of 2 wt% of the MWCNTs modified by the X-ray radiation can improve the yield strength of 20%; but it is difficult to effectively improve the thermal conductivity of the composite material by introducing a small amount of mwcnts.
【學(xué)位授予單位】:中國科學(xué)院研究生院(上海應(yīng)用物理研究所)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O632.12
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉廣建,岳文貞,陳榮春;UHMWPE用于生物工程的摩擦磨損研究[J];工程塑料應(yīng)用;2002年01期
2 安峰,李炳海,龐波,陳業(yè)軍,王隆;UHMWPE改性PP共混物的力學(xué)性能[J];塑料;2003年06期
3 呂生華,王結(jié)良,何洋,梁國正,陳成泗;UHMWPE纖維高強(qiáng)度繩索的研究[J];工程塑料應(yīng)用;2003年06期
4 莊興民,張慧萍,晏雄;UHMWPE/PE復(fù)合材料的開發(fā)與性能研究[J];玻璃鋼/復(fù)合材料;2004年01期
5 黃學(xué)祥;韓勇;嚴(yán)為群;王德禧;;UHMWPE的近熔點(diǎn)擠出技術(shù)及制品性能與應(yīng)用[J];工程塑料應(yīng)用;2006年11期
6 沈烈;;PREPARATION OF MICROPOROUS ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE (UHMWPE) BY THERMALLY INDUCED PHASE SEPARATION OF A UHMWPE/LIQUID PARAFFIN MIXTURE[J];Chinese Journal of Polymer Science;2008年06期
7 張煒;麥永懿;唐頌超;吳向陽;張玉梅;洪尉;;UHMWPE/PP共混改性體系研究(Ⅰ)[J];塑料;2008年05期
8 張煒;洪尉;夏晉程;沈賢婷;吳向陽;麥永懿;;UHMWPE/PP/PP基無機(jī)填料母粒復(fù)合材料的制備及表征[J];工程塑料應(yīng)用;2010年06期
9 ;寧波大成UHMWPE纖維產(chǎn)業(yè)化[J];精細(xì)化工原料及中間體;2012年07期
10 ;我國掌握UHMWPE干法成套技術(shù)[J];石油化工應(yīng)用;2013年09期
相關(guān)會(huì)議論文 前10條
1 董麗杰;陳濤;熊傳溪;;填料填充UHMWPE的耐熱降磨研究[A];2005年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2005年
2 王磊;閔明華;石建高;劉永利;陳曉蕾;樂國義;龔劍彬;;UHMWPE纖維研發(fā)與生產(chǎn)現(xiàn)狀[A];中國海洋學(xué)會(huì)2013年學(xué)術(shù)年會(huì)第14分會(huì)場海洋裝備與海洋開發(fā)保障技術(shù)發(fā)展研討會(huì)論文集[C];2013年
3 Yang Wang;Ning-Ning Wu;Yu-Qin Mou;Liang Chen;Zhong-Liang Deng;;Inhibitory effects of recombinant IL-4 and recombinant IL-13 on UHMWPE-induced bone destruction in the murine air pouch model[A];中華醫(yī)學(xué)會(huì)第五次中青年骨質(zhì)疏松和骨礦鹽疾病學(xué)術(shù)會(huì)議論文集[C];2013年
4 趙忠華;吳冬莉;薛平;何亞東;;UHMWPE微孔隔板結(jié)構(gòu)的測試與分形模型研究[A];2002年中國工程塑料加工應(yīng)用技術(shù)研討會(huì)論文集[C];2002年
5 劉秧生;高萬振;;UHMWPE材料制備技術(shù)及其摩擦學(xué)應(yīng)用[A];第二屆全國工業(yè)摩擦學(xué)大會(huì)暨第七屆全國青年摩擦學(xué)學(xué)術(shù)會(huì)議會(huì)議論文集[C];2004年
6 沈艷秋;張德坤;王慶良;;UHMWPE/BHA復(fù)合材料的生物摩擦性能研究[A];2006全國摩擦學(xué)學(xué)術(shù)會(huì)議論文集(一)[C];2006年
7 ;Study on Resin Matrix in UHMWPE Fibers Protective Composites[A];2007年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊)[C];2007年
8 姚仲梁;陳勇;李猛;姚嗣佳;嚴(yán)為群;王德禧;;分子量250萬以上UHMWPE管材、板材的產(chǎn)業(yè)化開發(fā)[A];2008雙(多)金屬復(fù)合管/板材生產(chǎn)技術(shù)開發(fā)與應(yīng)用學(xué)術(shù)研討會(huì)文集[C];2008年
9 陳霧;金永亮;段海濤;顧卡麗;;UHMWPE溫度-時(shí)間效應(yīng)的分子動(dòng)力學(xué)模擬[A];第十一屆全國摩擦學(xué)大會(huì)論文集[C];2013年
10 于俊榮;胡祖明;劉兆峰;;UHMWPE/納米SiO_2溶液的制備[A];2004年全國高分子材料科學(xué)與工程研討會(huì)論文集[C];2004年
相關(guān)重要報(bào)紙文章 前8條
1 陶炎;我掌握UHMWPE干法成套技術(shù)[N];中國化工報(bào);2013年
2 記者 仇國賢 通訊員 黃安平;5000噸UHMWPE工藝包通過評審[N];中國化工報(bào);2014年
3 主持人 梁楓;自主創(chuàng)新迫使洋貨降價(jià)[N];中國紡織報(bào);2011年
4 王永軍;超高分子量聚乙烯開發(fā)成功[N];中國石化報(bào);2012年
5 畢家立;超高分子量聚乙烯加工改性熱點(diǎn)[N];中國化工報(bào);2003年
6 ;超高分子量聚乙烯管材生產(chǎn)技術(shù)及裝備[N];中國化工報(bào);2003年
7 劉云;華錦超高分子量聚乙烯纖維項(xiàng)目市場前景巨大[N];盤錦日報(bào);2008年
8 王永軍;第三代高性能纖維樹脂趕超國外[N];中國化工報(bào);2012年
相關(guān)博士學(xué)位論文 前10條
1 熊磊;納米填充與輻照交聯(lián)UHMWPE的力學(xué)及摩擦學(xué)性能研究[D];南京理工大學(xué);2011年
2 張海琛;基于拉伸流變的UHMWPE熔融擠出過程及其結(jié)構(gòu)與性能研究[D];華南理工大學(xué);2016年
3 王洪龍;超高分子量聚乙烯輻射效應(yīng)與改性研究[D];中國科學(xué)院研究生院(上海應(yīng)用物理研究所);2017年
4 龔國芳;UHMWPE/Kaolin復(fù)合材料的摩擦磨損特性和機(jī)理研究[D];中國礦業(yè)大學(xué)(北京);2005年
5 秦襄培;基于數(shù)字化技術(shù)的UHMWPE材料摩擦學(xué)特性研究[D];機(jī)械科學(xué)研究總院;2006年
6 時(shí)曉梅;UHMWPE/HA梯度復(fù)合髖臼材料的制備及性能研究[D];大連理工大學(xué);2013年
7 劉功德;超高分子量聚乙烯的加工與高性能化研究[D];四川大學(xué);2003年
8 倪自豐;超高分子量聚乙烯的抗氧化處理及其生物摩擦學(xué)行為研究[D];中國礦業(yè)大學(xué);2009年
9 康學(xué)勤;超高分子量聚乙烯的氧化降解機(jī)理及其生物摩擦學(xué)研究[D];中國礦業(yè)大學(xué);2014年
10 王小俊;超高分子量聚乙烯的流變行為及其在材料加工中的應(yīng)用[D];華南理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 張迪;超高分子量聚乙烯(UHMWPE)復(fù)合材料的成分組織與性能研究[D];長春理工大學(xué);2010年
2 陳濤;UHMWPE耐熱降磨改性研究[D];武漢理工大學(xué);2005年
3 明艷;UHMWPE/PP的共混改性研究[D];華北工學(xué)院;2003年
4 侯文潭;UHMWPE塑燒板基板成型過程的數(shù)值模擬及其制備工藝研究[D];中南大學(xué);2012年
5 劉陽;臨床相關(guān)的微米級載阿侖膦酸鈉超高分子量聚乙烯磨屑的研究[D];西南交通大學(xué);2015年
6 劉紅利;高強(qiáng)多孔UHMWPE纖維成型工藝與結(jié)構(gòu)性能研究[D];鄭州大學(xué);2015年
7 顧靜;UHMWPE纖維性能及其應(yīng)用研究[D];蘇州大學(xué);2015年
8 韋越;隔離結(jié)構(gòu)CB/PP/UHMWPE復(fù)合材料的電性能及外場響應(yīng)性能研究[D];鄭州大學(xué);2015年
9 顧雋;UHMWPE纖維樹脂復(fù)合材料的研究[D];上海交通大學(xué);2011年
10 張高峰;人工膝關(guān)節(jié)材料界面間的生物摩擦學(xué)研究[D];中國礦業(yè)大學(xué);2015年
,本文編號:2365029
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2365029.html