基于近紅外光譜成品油性質(zhì)檢測(cè)方法與算法的研究
[Abstract]:The wide application of Near-infrared spectroscopy (NIR) technology has promoted the rapid development of oil quality detection technology. It is the primary goal of NIR detection technology to establish a detection model with high prediction accuracy, high reliability and good stability. In order to achieve this goal, an algorithm based on near infrared spectroscopy (NIR) is designed to detect the properties of oil products. The prediction accuracy and reliability of the model are studied in detail. The first chapter of this paper summarizes the research background of the subject, and the research status of oil quality testing. In the second chapter, the basic principle of partial least square method is introduced, and the method flow of oil quality detection based on partial least square method is presented, which mainly includes collecting near infrared spectrum, selecting characteristic spectrum, spectrum pretreatment, selecting similar samples. The partial least square model is established, the property prediction and the result analysis are seven parts. Finally, the existing problems in the detection process are analyzed. In the third chapter, we design a method of eliminating abnormal samples based on principal component analysis and property correlation analysis, analyze the influence of abnormal samples on the prediction accuracy of the model, and introduce the basic principle of principal component analysis. This paper gives the detailed steps of the method of eliminating abnormal samples in correction set, and takes the detection of octane number of gasoline research method of 93# in a refinery enterprise as an example, and makes a detailed analysis of the abnormal reason of the sample. In the fourth chapter, the factors affecting the precision of oil quality detection, including temperature and noise interference, are analyzed. The method of improving the detection precision based on spectral temperature correction is designed, and the construction process of spectral transfer function based on subsection direct standardization algorithm is introduced. Taking the detection of octane number of 9 gasoline research method in a refinery enterprise as an example, the detailed analysis is given. In addition, the detection accuracy enhancement method based on discrete wavelet transform and fast Fourier transform is designed, and the basic principles of discrete wavelet transform and fast Fourier transform are introduced. Based on discrete wavelet transform (DWT) and fast Fourier transform (FFT), this paper presents the detailed steps of testing the properties of refined oil products, and gives a case study and analysis of the octane number of 9 gasoline research method in a refinery enterprise. In chapter 5, the reliability evaluation method based on sample distribution concentration and model prediction ability is designed, and the evaluation indexes of common test models are introduced. The detailed steps of the reliability evaluation method for the testing results of the oil product properties are given, and taking the detection of the octane number of the 9 gasoline research method in a refinery enterprise as an example, the detailed analysis is made. According to the analysis of the experimental results, the proposed algorithm based on near infrared spectroscopy can meet the requirements of high prediction accuracy and high reliability of the model, and improve the economic benefit for the refinery and chemical enterprises.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O657.33;TE622
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李敬巖;安曉春;田松柏;楊星明;;柴油十六烷值快速分析技術(shù)研究[J];石油煉制與化工;2016年05期
2 侯培國(guó);李寧;常江;王書(shū)濤;宋濤;;SG平滑和IBPLS聯(lián)合優(yōu)化水中油分析方法的研究[J];光譜學(xué)與光譜分析;2015年06期
3 范文;王萍;袁悅;孫紅躍;;基于SVM分類(lèi)可信度的暴雨/冰雹分類(lèi)模型[J];北京工業(yè)大學(xué)學(xué)報(bào);2015年03期
4 夏巧生;;非線性偏最小二乘建模方法及在近紅外光譜建模上的應(yīng)用[J];計(jì)算機(jī)與應(yīng)用化學(xué);2014年01期
5 張軍;姜黎;陳哲;余謙;梁靜秋;王京華;;基于近紅外光譜技術(shù)成品汽油分類(lèi)方法的研究[J];光譜學(xué)與光譜分析;2010年10期
6 陳斌;鄒賢勇;朱文靜;;PCA結(jié)合馬氏距離法剔除近紅外異常樣品[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年04期
7 馮尚坤;徐海菊;;基于BP神經(jīng)網(wǎng)絡(luò)的啤酒酒精度近紅外光譜快速檢測(cè)[J];紅外技術(shù);2008年01期
8 呂慧英;任玉林;劉名揚(yáng);;PLS-ANN算法-NIR光譜非破壞性Norvasc藥物有效成分的定量分析[J];高等學(xué);瘜W(xué)學(xué)報(bào);2007年05期
9 田高友,袁洪福,褚小立,劉慧穎,陸婉珍;結(jié)合小波變換與微分法改善近紅外光譜分析精度[J];光譜學(xué)與光譜分析;2005年04期
10 閔順耕,李寧,張明祥;近紅外光譜分析中異常值的判別與定量模型優(yōu)化[J];光譜學(xué)與光譜分析;2004年10期
相關(guān)會(huì)議論文 前3條
1 陸婉珍;袁洪福;徐廣通;劉偉;陳英;;現(xiàn)代近紅外光譜技術(shù)在石油產(chǎn)品分析中的應(yīng)用[A];中國(guó)分析測(cè)試協(xié)會(huì)科學(xué)技術(shù)獎(jiǎng)發(fā)展回顧[C];2015年
2 陳朝暉;馮新瀘;史永剛;劉足票;;短波近紅外光譜法測(cè)定汽油辛烷值的機(jī)理探討[A];全國(guó)第六屆分子振動(dòng)光譜學(xué)術(shù)報(bào)告會(huì)文集[C];1990年
3 馮新瀘;史永剛;;柴油分子結(jié)構(gòu)的近紅外光譜表征及其與凝點(diǎn)的關(guān)系[A];全國(guó)第六屆分子振動(dòng)光譜學(xué)術(shù)報(bào)告會(huì)文集[C];1990年
相關(guān)碩士學(xué)位論文 前1條
1 高俊;近紅外光譜分析技術(shù)在油品分析中的應(yīng)用研究[D];南京工業(yè)大學(xué);2005年
,本文編號(hào):2350084
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2350084.html