固體酸催化合成2-戊基蒽醌的研究
[Abstract]:Alkyl peroxide is an important fine chemical intermediate, and is the main raw material for the synthesis of the sulfur-based dye. It is also used as a catalyst for the synthesis of hydrogen peroxide. It occupies an important position in the national economy and has important industrial value. 2-AAQ is the main intermediate and raw material for producing ultra-pure hydrogen peroxide (H _ 2O _ 2), degrading resin, dye and photosensitive compound because of high stability, good working fluid compatibility and high catalytic efficiency in the production of hydrogen peroxide. The conventional 2-AAQ production process is as follows: Lewis acid (AlCl3) is used to catalyze the Friedel-Crafts of 2-pentylbenzene and benzene to synthesize the intermediate 2-(4-pentylphenyl) benzoic acid (ABB), and then the 2-AAQ is synthesized with concentrated sulfuric acid or fuming sulfuric acid for ABB dehydration closed-loop synthesis. but the process produces a large amount of waste acid, not only the equipment but also the environment. Therefore, a new catalytic process is developed, and the green synthesis of 2-AAQ has a wide application prospect. In this paper, the environment-friendly solid acid catalyst is used as the zeolite molecular sieve, and the traditional concentrated sulfuric acid catalyst is used to catalyze the synthesis of 2-AAQ by the reaction of the ABB dehydration condensation reaction. The results of the catalytic performance of different types of solid acid catalysts show that the H-Beta zeolite molecular sieve is more favorable for the reaction, and the selectivity of 2-AAQ is 99.2% by the optimization of the modification and the process conditions, and the conversion rate of the ABB reaches 95.8%. The invention solves the problems of no re-use of the catalyst, difficult separation of the catalyst and the product after the reaction, and opens up a new green process for the production of 2-AAQ. In addition, we try to replace the traditional Lewis acid catalyst with the supported catalyst to catalyze the Friedel-Crafts-based reaction of the pentylbenzene and the benzene to synthesize the ABB. The results show that the yield of ABB is low and the production process needs to be further optimized. The specific content of the study is as follows: 1. the catalyst Beta zeolite molecular sieve is synthesized by using cheap kieselguhr as a silicon source and an aluminum source through a hydrothermal synthesis method. The effect of the gel composition, the amount of H _ 2O, the crystallization time, the crystallization temperature and the like on the synthetic Beta zeolite molecular sieve was investigated, and it was applied to the synthesis of 2-AAQ. 2.H-Y, H-ZSM-5, H-Beta, phosphotungstic acid, and P-The catalytic performance of the solid acid catalyst such as montmorillonite and other solid acid catalysts shows that the H-Beta zeolite molecular sieve exhibits better catalytic performance in the 2-AAQ process of the ABB dehydration closed-loop synthesis, and the conversion rate of ABB and the selectivity of 2-AAQ are all higher than that of other types of solid acid catalysts. The catalytic effect of the H-Beta zeolite molecular sieve modified by organic acid (citric acid) on the synthesis of 2-AAQ by the dehydration of ABB was better than the catalytic effect when the catalyst was modified with CeCl _ 3 路 7H _ 2O and ZrOCl _ 2 路 8H _ 2O. The catalytic performance of the H-Beta zeolite molecular sieve modified by citric acid is affected by the number of ion exchange, with the increase of the exchange times, the total acid amount is reduced, the relative content of the weak acid is reduced, the relative content of the strong acid is increased, the catalytic performance is improved, and the exchange of the two effects is optimal. The optimum reaction conditions were as follows: the amount of the catalyst was 28. 6% of the raw material, the reaction temperature was 280.degree. C., the reaction time was 1. 5 h, the conversion of ABB was obtained by the high performance liquid chromatography area normalization method, and the selectivity of 2-AAQ was 99.2%. The experimental results of the activity stability of the catalyst show that the catalytic effect of the catalyst is obviously reduced after 3 times of repeated use of the catalyst. and the conversion rate of the catalyst after high-temperature roasting regeneration can reach 97. 7%, the selectivity of the 2-AAQ is more than 84.3%, and the catalytic performance can be recovered. The modified Beta zeolite molecular sieve catalyst was characterized by XRD, SEM, TG, IR, NH3-TPD and BET. The intermediate ABB and the product 2-AAQ were obtained by the water-washing and acid-washing process, and the intermediate ABB and the target product 2-AAQ were confirmed by IR, 1H NMR and 13C NMR.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O643.36;TQ244.63
【相似文獻】
相關(guān)期刊論文 前10條
1 ;蒽醌硝化還原制1—氨基蒽醌[J];染料工業(yè);1970年03期
2 ;西德新建一坐新工藝生產(chǎn)蒽醌的工廠[J];染料工業(yè);1978年03期
3 ;關(guān)于蒽醌的化學(xué)性質(zhì)及分析檢驗[J];四川造紙;1979年01期
4 王芳峨;;關(guān)于蒽醌[J];四川造紙;1980年04期
5 張惠民;;苯酐法制蒽醌技術(shù)改進[J];遼寧化工;1983年05期
6 蘭澤冠;左新舉;;蒽醌型藍色分散染料的合成研究[J];染料工業(yè);1990年05期
7 勞嘉葆;;四氫蒽醌與蒽醌效果比較[J];紙和造紙;1991年03期
8 楊威;;近年印度蒽醌的產(chǎn)量及出口量[J];染料工業(yè);1991年01期
9 苑正霞;;蒽氧化制蒽醌的方法探討[J];河南化工;1992年02期
10 蔡文祥;合理使用蒽醌[J];紙和造紙;1995年02期
相關(guān)會議論文 前9條
1 李玉林;車國冬;王凌云;周國英;胡鳳祖;索有瑞;陳桂琛;;青海栽培唐古特大黃中蒽醌含量的季節(jié)動態(tài)變化研究[A];首屆中國中西部地區(qū)色譜學(xué)術(shù)交流會暨儀器展覽會論文集[C];2006年
2 王強;羅云;金城;任永申;王伽伯;曲毅;肖小河;;干燥方式和條件對大黃水提液蒽醌和鞣質(zhì)成分含量的影響[A];中華中醫(yī)藥學(xué)會中成藥學(xué)術(shù)研討會論文集[C];2007年
3 李先端;黃璐崎;;炮制對中藥大黃5種蒽醌成分含量的影響[A];全國中藥標準研究學(xué)術(shù)研討會論文集[C];2005年
4 時蕾;王振平;劉艷春;張貴生;;新型蒽醌縮氨基硫脲化合物的合成及抗腫瘤活性研究[A];河南省化學(xué)會2012年學(xué)術(shù)年會論文摘要集[C];2012年
5 張廷劍;袁偉燕;王琳;孟繁浩;;N6-(蒽醌-2-甲酰胺)-腺嘌呤類化合物的制備及其作為DNA電子供體的研究[A];2011年全國藥物化學(xué)學(xué)術(shù)會議——藥物的源頭創(chuàng)新論文摘要集[C];2011年
6 馮亞華;;測定蒽醌含量的方法與探討[A];新世紀優(yōu)秀學(xué)術(shù)成果評選暨交流大會論文集[C];2000年
7 李翠翠;楊海龍;魏華;張平竹;王克讓;李小六;;蒽醌并雜環(huán)衍生物的合成及抗腫瘤活性的研究[A];第八屆全國化學(xué)生物學(xué)學(xué)術(shù)會議論文摘要集[C];2013年
8 李大川;尹應(yīng)武;;鈀/多壁碳納米管催化2-乙基蒽醌加氫生產(chǎn)過氧化氫[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第34分會:納米催化[C];2014年
9 徐新亞;劉訓(xùn)紅;;決明子炮制前后蒽醌含量的變化[A];全國中藥研究與開發(fā)學(xué)術(shù)研討會論文摘要集[C];2001年
相關(guān)重要報紙文章 前2條
1 郭焰;國內(nèi)最大氧化蒽醌項目啟動[N];中國化工報;2000年
2 孟暉;2-烷基蒽醌與過氧化氫共增長[N];中國化工報;2004年
相關(guān)博士學(xué)位論文 前2條
1 賈振寶;決明子中蒽醌化合物組成和功能的研究[D];江南大學(xué);2006年
2 李鳳新;虎杖提取物抗病毒物質(zhì)基礎(chǔ)、藥理作用及代謝研究[D];吉林大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 馬紅玉;蒽醌類成分的體內(nèi)外檢測研究[D];貴州大學(xué);2015年
2 李勇;2-叔戊基蒽醌的合成與分析[D];湘潭大學(xué);2015年
3 關(guān)超陽;蒽醌加氫和蒽醌降解物再生催化劑制備及性能研究[D];北京化工大學(xué);2016年
4 何志遠;蒽醌加氫反應(yīng)鈀基催化劑的研究[D];天津大學(xué);2015年
5 陳華玉;1-硝基蒽醌制備1-氨基蒽醌新工藝[D];大連理工大學(xué);2016年
6 劉嬌嬌;化學(xué)法固定蒽醌分子的工藝研究[D];河北科技大學(xué);2016年
7 張美麗;雙氧水工作液中蒽醌含量的測定[D];武漢工程大學(xué);2016年
8 關(guān)盛文;固體酸催化合成2-戊基蒽醌的研究[D];吉林大學(xué);2017年
9 姚明明;基于蒽醌的給受體型熒光分子的設(shè)計合成與光電性質(zhì)研究[D];吉林大學(xué);2017年
10 湛亞瓊;蘆薈蒽醌的降血脂、降血糖和抑菌功能研究[D];江西農(nóng)業(yè)大學(xué);2014年
,本文編號:2330025
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2330025.html