用于氨氣選擇性催化還原氮氧化物組合催化劑的研究
[Abstract]:With the development of China's industry and the growth of automobile usage, a great deal of coal and oil are used for combustion, and the tail gas produced after combustion produces serious pollution to the earth's atmosphere. The ensuing series of air pollution problems, such as acid rain, haze and global warming, have a great impact on our people's lives and the development of the whole human society. It can be said that the pollution of the atmosphere threatens our health and living environment. Nitrogen oxides (NOx) are one of the main pollutants in atmospheric pollutants, mainly including NO and NO2 and a small amount of N2O. Our country's emission of nitrogen oxides has also become very strict. Ammonia-selective catalytic reduction of nitrogen oxide (NH3-SCR) is a kind of denitration method with reliable, high efficiency, good selectivity and good cost performance. Although the V-W (Mo)/ TiO2 catalyst has been applied in thermal power plant, it still has the problems of high operating temperature, narrow operating temperature window, selective decrease of N2 at high temperature, oxidation of SO2 to SO3, etc. Therefore, the development of a novel NH3-SCR catalyst with good effect is still the direction we should strive for. In the third chapter, several kinds of single metal oxides with different oxidizability are prepared. It is found that the oxidation of metal oxide catalysts plays an important role in NH3-SCR by comparison of the activity of a single metal oxide with different oxidation properties. The oxidation-resistant metal oxide catalysts tend to have good NH3-SCR catalytic reaction activity at low temperatures, but a large number of NO2 and N2O are generated during the reaction resulting in poor N2 selectivity. The MnOx synthesized by the precipitation method is Mn5O8, and MnOx synthesized by hydrothermal synthesis is mainly MnO2. The MnOx synthesized by hydrothermal method has further improved MnOx activity, but its selectivity is still poor. Through the sulfuric acid treatment of the MnOx synthesized by the precipitation method, the SO42-/ MnOx catalyst is prepared, and the selectivity and the activity of the reaction are greatly improved. By means of a series of characterization, it has been found that the introduction to MnOx plays a role in passivating the catalyst, while reducing MnOx oxidation, increasing the amount of oxygen on the surface of MnOx so as to improve the catalytic activity of MnOx. In the fourth chapter, a series of acid different metal oxides are prepared. Through the NH3-SCR catalytic activity evaluation of these acidic metal oxide catalysts, it was found that the acidity of metal oxides plays an important role in the reaction. Metal oxides with stronger acidity tend to have better high temperature activity, and their N2 selectivity is higher. Fe _ 2O _ 3 superacid catalyst was prepared by acid treatment of Fe2O3. After the sulfuric acid treatment, the Fe-/ Fe 2O 3 catalyst is greatly improved in activity and selectivity, and a series of characterization is carried out to analyze the SO42-/ Fe2O3 catalyst, It has been found that the introduction of hydrogen peroxide in the improvement of the acidity of Fe203 also increases the content of active oxygen species on the surface of the catalyst, thereby increasing the activity of its reaction. In the fifth chapter, a series of Mn-based composite metal oxides with good high-temperature activity are selected at low temperature. Through the active evaluation of the composite metal oxides of these two series, the composite metal oxide of Mn series has better NO conversion rate at low temperature. However, a large number of by-products are produced during the reaction, thereby reducing the N2 selectivity of the reaction. The Ce series composite metal oxide catalyst has better high temperature activity and N2 selectivity. The MnFeOx composite metal oxide is further selected to acidify it to prepare the Ni-/ MnFeOx catalyst. Although Fe-/ MnFeOx has been reduced at low temperature activity, the activity and selectivity at higher temperatures are greatly improved. In Chapter 6, we select a single metal oxide, composite metal oxide and modified single metal oxide. The combined catalyst was then prepared by three different combinations and the NH3-SCR activity was evaluated. Experiments show that when the catalyst is combined, the high-temperature active agent with good acidity is often placed in the front half section, and the catalyst which is formed by placing the low-temperature catalyst with good oxidation resistance in the second half section has the best catalytic activity and selectivity.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O643.36
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 寧化保;韓世奇;田淑英;;節(jié)能型氨催化劑的應(yīng)用及效果[J];節(jié)能;1989年06期
2 龔惠娟,陳澤智;車用尾氣催化劑催化特性的模擬[J];計(jì)算機(jī)與應(yīng)用化學(xué);2000年05期
3 陳澤智,陶建幸,龔惠娟;車用尾氣催化劑工作性能的模擬與分析方法[J];計(jì)算機(jī)與應(yīng)用化學(xué);2001年Z1期
4 王嵩;毛東森;吳貴升;郭曉明;盧冠忠;;銅/氧化鋯催化劑的制備及應(yīng)用研究進(jìn)展[J];化工進(jìn)展;2008年06期
5 趙海;張德祥;高晉生;;稀土摻雜鐵錳脫硝催化劑的制備及其性能研究[J];煤炭轉(zhuǎn)化;2011年04期
6 ;輕油制氫燒結(jié)型催化劑降低煅燒溫度和催化劑中鎳含量初步研究[J];勝利石油化工;1976年03期
7 秦永寧;烴類水蒸汽轉(zhuǎn)化制氫催化劑初步設(shè)計(jì)[J];天津大學(xué)學(xué)報(bào);1978年02期
8 南化公司研究院二室釩催化劑組;美國進(jìn)口硫酸釩催化劑剖析報(bào)告[J];硫酸工業(yè);1979年02期
9 劉金香;高秀英;;熱重法用于天然氣蒸汽轉(zhuǎn)化催化劑的篩選和還原條件的考察[J];石油化工;1980年07期
10 楊孔章;劉傳樸;;氫氣脈沖色譜法測定催化劑中鎳表面積[J];石油化工;1980年10期
相關(guān)會議論文 前10條
1 李文鵬;徐顯明;郁向民;李方偉;裴皓天;李影輝;;天然氣二段蒸汽轉(zhuǎn)化催化劑的分析表征[A];第四屆全國工業(yè)催化技術(shù)及應(yīng)用年會論文集[C];2007年
2 汪國軍;吳糧華;陳欣;謝在庫;;丙烯腈新型催化劑研制[A];第十三屆全國催化學(xué)術(shù)會議論文集[C];2006年
3 鄭俊嫻;王遠(yuǎn)洋;;相催化劑微粒聚集分維特征的模擬研究[A];第七屆全國催化劑制備科學(xué)與技術(shù)研討會論文集[C];2009年
4 周曉奇;李速延;;變換催化劑的現(xiàn)狀及其發(fā)展趨勢[A];第2屆全國工業(yè)催化技術(shù)及應(yīng)用年會論文集[C];2005年
5 張鴻喜;吳君璧;宋美婷;李海濤;亢麗娜;趙永祥;;水熱條件下Ni/La_2O_3-SiO_2-Al_2O_3催化劑結(jié)構(gòu)演變[A];第十屆全國工業(yè)催化技術(shù)及應(yīng)用年會論文集[C];2013年
6 歐陽平;姚金華;陳國需;李華峰;;摩擦催化反應(yīng)中機(jī)械摩擦作用對催化劑的影響[A];第四屆全國工業(yè)催化技術(shù)及應(yīng)用年會論文集[C];2007年
7 劉智;黃海兵;張新莉;甄洪鵬;義建軍;黃啟谷;楊萬泰;張明革;高克京;李紅明;;高活性TiCl_4/SiO_2/AlEt_3催化劑淤漿聚合制備寬峰分布聚乙烯[A];2011年全國高分子學(xué)術(shù)論文報(bào)告會論文摘要集[C];2011年
8 楊述芳;陶若虹;徐樹元;任宏俊;;催化劑的壁厚設(shè)計(jì)與壽命管理[A];2012中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第三卷)[C];2012年
9 韓哲;張冬菊;李國平;武劍;劉成卜;;Ziegler-Natta催化劑下α-烯烴聚合反應(yīng)中若干問題的理論研究[A];中國化學(xué)會第九屆全國量子化學(xué)學(xué)術(shù)會議暨慶祝徐光憲教授從教六十年論文摘要集[C];2005年
10 洪景萍;;山梨醇和釕助劑添加對二氧化硅擔(dān)載鈷基催化劑結(jié)構(gòu)及其費(fèi)托合成性能影響的原位表征研究[A];中國化學(xué)會第28屆學(xué)術(shù)年會第1分會場摘要集[C];2012年
相關(guān)重要報(bào)紙文章 前3條
1 覃澤文;催化劑助氫氣輕松儲存[N];中國能源報(bào);2009年
2 仇國賢;原位晶化催化劑降物耗能耗[N];中國化工報(bào);2009年
3 特約記者 張曉君 蕭兵;科技創(chuàng)新降低能耗提高效率[N];中國石油報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 周功兵;液相苯部分加氫制環(huán)己烯新型釕催化劑的研究[D];復(fù)旦大學(xué);2014年
2 劉洋;基于POC和SCR技術(shù)降低車用柴油機(jī)顆粒物和氮氧化物排放的研究[D];山東大學(xué);2015年
3 伍士國;基于CTAB輔助制備的FeMnTiO_x催化劑NH_3-SCR脫硝的性能研究[D];南京大學(xué);2015年
4 曹朋;丁腈橡膠溶液加氫催化劑的制備及活性研究[D];北京化工大學(xué);2015年
5 王芬芬;纖維素催化轉(zhuǎn)化制備乳酸[D];陜西師范大學(xué);2015年
6 郭躍萍;電沉積制備非晶態(tài)Co基薄膜催化劑硼氫化鈉制氫研究[D];蘭州大學(xué);2013年
7 湯常金;固相法制備金屬氧化物催化材料及其消除CO、NO性能研究[D];南京大學(xué);2011年
8 孫傳智;TiO_2基催化劑的制備、表征及其在環(huán)境催化中應(yīng)用的基礎(chǔ)研究[D];南京大學(xué);2011年
9 杜瑋辰;負(fù)載型加氫金屬催化劑的制備及其應(yīng)用[D];浙江大學(xué);2016年
10 苗雨欣;Au催化劑的制備及CO催化氧化性能研究[D];大連理工大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 王強(qiáng);用于氨氣選擇性催化還原氮氧化物組合催化劑的研究[D];北京化工大學(xué);2017年
2 段志敏;甲烷二氧化碳重整反應(yīng)鎳基和鈷基催化劑的制備及性能研究[D];內(nèi)蒙古大學(xué);2015年
3 馬茹瑰;CO_2加氫合成甲醇Cu-ZnO-ZrO_2催化劑的制備與性能研究[D];昆明理工大學(xué);2015年
4 何貞泉;Cu/γ-Al_2O_3催化劑對HCN的催化水解性能研究[D];昆明理工大學(xué);2015年
5 陳新怡;超臨界甲醇中纖維素半纖維素催化轉(zhuǎn)移加氫液化研究[D];昆明理工大學(xué);2015年
6 陳雅;M41S及SBA-15介孔分子篩固載硅鎢酸催化劑的制備表征及催化性能研究[D];鄭州大學(xué);2015年
7 李博;過渡金屬復(fù)合物催化劑催化二氧化碳加氫反應(yīng)的研究[D];蘭州大學(xué);2015年
8 邢婉貞;硅烷偶聯(lián)劑改性硅膠催化雙氧水的Baeyer-Villiger反應(yīng)研究[D];南京理工大學(xué);2015年
9 郭瑜;負(fù)載型鐵基納米金催化劑的制備及其構(gòu)效關(guān)系研究[D];山東大學(xué);2015年
10 張信莉;Mn改性γ-Fe_2O_3催化劑低溫SCR脫硝性能研究[D];山東大學(xué);2015年
,本文編號:2264418
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2264418.html