負載型Pt基納米復(fù)合催化劑的制備及其對4-硝基苯酚加氫的研究
[Abstract]:Aromatic amines are widely used in many fields, such as fine chemical industry, fuel, medicine and so on. The process of preparing aromatic amines by catalytic hydrogenation reduction of nitroaryl compounds has become the most commonly used method for the production of aromatic amines because of its environmental friendliness and ease of operation. In the process of catalytic hydrogenation, the efficient catalyst has an important effect on the production cost and product quality of aromatic amines. In this paper, two kinds of supported Pt based nanocatalysts were prepared for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The main results are as follows: (1) Platinum modified supported nickel (NiPt) nanocatalysts were prepared. Firstly, supported platinum nanocatalysts were prepared by using glucose carbonized products as reducing agent and hydrotalcite as support. Secondly, platinum modified supported nickel nanocatalysts were obtained by calcining at high temperature. The main contents are as follows: the nickel aluminum hydrotalcite (NiAl-LDH) precursor was prepared by similar nucleation / crystallization isolation method. The NiAl-LDH precursor was mixed with glucose solution. In the process of crystallization, chloroplatinic acid was added, so that the crystallization process and the reduction process were carried out simultaneously. A highly dispersed supported platinum nanocatalyst (Pt@LDH/C) was prepared. Preparation of Platinum modified Nickel Nano-catalyst (NiPt). By calcining Pt@LDH/C at High temperature The effects of preparation conditions on the morphology and structure of nano-catalysts were investigated by changing the calcination temperature, and the optimum preparation conditions were determined. The effects of the morphology of nano-catalysts and the amount of Pt loading on the catalytic performance were obtained under the optimum preparation conditions. A series of NiPt nanocatalysts with different platinum loading were prepared by changing the loading amount of platinum. The structure and morphology of the nanocrystalline catalysts were characterized and the catalytic properties of the nanocrystalline catalysts were investigated. The results showed that when the theoretical loading amount of platinum was 0.6, the activity of nanometer catalyst was the highest. The bioporous carbon (PC) catalyst carrier was prepared by using biomass as raw material and molten salt as raw material in this study. Biomass is converted into porous carbon through a simple molten salt synthesis process. The carbonation and activation process can be completed in one step by this method, and the carbonation time and temperature are significantly reduced because the molten salt zinc chloride provides a better melting environment. The properties of porous carbon were characterized by XRD,TG-DSC,SEM,TEM,FT-IR and BET adsorption isotherms. The results show that the prepared porous carbon is amorphous, with a graded pore structure and a specific surface area of 1642 m2g-1.The surface is rich in various functional groups. These functional groups can provide more adsorption sites. 4. Preparation of Sno _ 2 / porous carbon complexes and their support and catalytic performance on Pt nanocatalysts. Firstly, solvothermal synthesis of tin dioxide / porous carbon (SnO_2-PC) complexes is studied. Then the supported platinum nanocatalyst (Pt@SnO_2-PC) was prepared by using ethylene glycol (EG) as the reductant Sno _ 2-PC complex as the carrier. The main contents are as follows: using stannous chloride as tin source, alkaline ethanol as reducing agent and solvent, the SnO_2-PC complex was prepared by mixing with porous carbon under solvothermal conditions. Then, using this complex as carrier and EG as reducing agent, Pt@SnO_2-PC. was prepared by solvothermal method in ethylene glycol / water system. The structure and morphology of the nanocatalysts were characterized and the catalytic properties of the nanocrystalline catalysts were investigated. The effect of oxide on the activity of nanometer catalyst was determined. The results show that: SnO2-PC has no catalytic effect on the experiment, and PtSn-SnO2-PC has higher activity than Pt@PC under the same Pt loading. The results show that SnO_2 can promote the catalysis.
【學位授予單位】:鄭州大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:O643.36;TQ243.1
【相似文獻】
相關(guān)期刊論文 前10條
1 韓忠霄;殷蓉;李景印;王德松;;聚苯胺改性負載型納米二氧化鈦的研究[J];無機鹽工業(yè);2007年12期
2 楊洪麗;李為民;姚建;;鈣基負載型固體堿催化酯交換反應(yīng)活性評價[J];燃料化學學報;2008年02期
3 韓俊杰;;負載型金屬氧化物催化劑的分子設(shè)計[J];化學工程師;1993年02期
4 董文庚,郎志敏,陳學誠;一種負載型重金屬離子富集劑的制備及初步應(yīng)用[J];河北輕化工學院學報;1997年04期
5 林凱;辛嘉英;陳丹丹;張?zhí)m軒;王艷;夏春谷;;負載型納米金催化葡萄糖氧化研究進展[J];分子催化;2014年01期
6 李峰,許可,李蕾,王作新,段雪;硅膠負載型硫酸鋯表面相結(jié)構(gòu)的理論研究[J];化學學報;2000年02期
7 黃寶琛;賀繼東;徐玲;周健松;蔡明;唐學明;;負載型鈦系催化劑合成高反1,4—聚異戊二烯的研究[J];青島化工學院學報;1990年04期
8 賀繼東,王娟;負載型鈦催化劑催化異戊二烯溶液聚合動力學[J];青島大學學報(工程技術(shù)版);2000年03期
9 李小紅;鄭旭煦;侯苛山;;負載型二氧化鈦光催化劑的研究進展[J];重慶工商大學學報(自然科學版);2009年02期
10 吳沛成,忻新泉,戴安邦,張毓昌;負載型草酸鐵(Ⅲ)的光分解研究[J];科學通報;1984年11期
相關(guān)會議論文 前10條
1 梁長海;;金屬有機化學氣相沉積選控制備負載型催化新材料[A];第七屆全國催化劑制備科學與技術(shù)研討會論文集[C];2009年
2 辛秀蘭;洪珊;徐寶財;祝鈞;;負載型納米磷鉬雜多酸鹽制備研究[A];第十三屆全國催化學術(shù)會議論文集[C];2006年
3 康衛(wèi)民;付文麗;李全祥;程博聞;;纖維負載型催化材料研究進展[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
4 董林;陳懿;;負載型金屬氧化物催化劑表面相互作用研究[A];第十三屆全國催化學術(shù)會議論文集[C];2006年
5 郭瑜;賈春江;司銳;;負載型膠體金顆粒催化材料用于低溫催化一氧化碳氧化[A];中國化學會第29屆學術(shù)年會摘要集——第06分會:稀土材料化學及應(yīng)用[C];2014年
6 底蘭波;徐志堅;亓濱;王凱;張麗娟;張秀玲;;大氣壓介質(zhì)阻擋放電還原負載型金屬離子的機理研究[A];第十六屆全國等離子體科學技術(shù)會議暨第一屆全國等離子體醫(yī)學研討會會議摘要集[C];2013年
7 李洪芳;羅孟飛;魯繼青;;負載型金催化劑上甲醛低溫氧化[A];第六屆全國環(huán)境催化與環(huán)境材料學術(shù)會議論文集[C];2009年
8 安立敦;齊世學;鄒旭華;索掌懷;;催化性能穩(wěn)定的負載型納米金催化劑[A];中國化學會第二十五屆學術(shù)年會論文摘要集(下冊)[C];2006年
9 羅文豪;王小慧;張明慧;李偉;陶克毅;;負載型鉬的碳氮夾雜化合物制備及其加氫脫硫性能研究[A];中國化學會第26屆學術(shù)年會應(yīng)用化學分會場論文集[C];2008年
10 田然;王甫村;孫發(fā)民;朱金玲;呂倩;;負載型加氫催化劑金屬組分在載體上的分布狀態(tài)[A];第五屆全國工業(yè)催化技術(shù)與應(yīng)用年會論文集(上冊)[C];2008年
相關(guān)博士學位論文 前8條
1 熊君;硅基負載型離子液體催化氧化燃油脫硫的研究[D];江蘇大學;2015年
2 陳加利;高分散負載型鈀基金屬催化劑的制備、表征及其催化加氫性能研究[D];北京化工大學;2014年
3 鄭維時;基于酚醛樹脂微球為模板的負載型貴金屬催化劑的制備及性質(zhì)研究[D];吉林大學;2015年
4 吳海強;負載型點擊聚合催化劑的探索[D];浙江大學;2016年
5 周硼;硫酸衍生固體酸—負載型硫酸及其鹽和磺酸樹脂催化性能的研究[D];大連理工大學;2003年
6 王佳;層狀前驅(qū)體制備高分散負載型納米鎳基催化劑及其性能的研究[D];北京化工大學;2012年
7 辛俊娜;高分散負載型納米Pd基加氫催化劑的研究[D];大連理工大學;2008年
8 李凝;負載型納米ZrO_2/Al_2O_3復(fù)合載體及Ni基催化劑的研究[D];南昌大學;2006年
相關(guān)碩士學位論文 前10條
1 李志雄;負載型銅基催化劑CO_2加氫合成甲醇性能研究[D];昆明理工大學;2015年
2 尚會姍;負載型Pt基納米復(fù)合催化劑的制備及其對4-硝基苯酚加氫的研究[D];鄭州大學;2016年
3 羅啟文;固相法制備負載型酚類防老劑及其在丁苯橡膠中的應(yīng)用研究[D];華南理工大學;2016年
4 趙琛;磁性負載型超強酸催化的錫林浩特褐煤的加氫裂解[D];中國礦業(yè)大學;2016年
5 張棟棟;負載型鐵催化的興和褐煤的加氫轉(zhuǎn)化[D];中國礦業(yè)大學;2016年
6 屈萌;負載型固體超強酸催化的蒙東褐煤的加氫轉(zhuǎn)化[D];中國礦業(yè)大學;2016年
7 付亞;α-蒎烯加氫負載型鎳催化劑的研究[D];東南大學;2005年
8 李辛玉;負載型金催化劑對丙酮及苯系物的低溫催化消除[D];湖南科技大學;2007年
9 郭敏;負載型鉻基介孔催化劑的制備及其應(yīng)用[D];太原理工大學;2013年
10 邵芳;負載型酞菁的合成及催化氧化性能研究[D];濟南大學;2011年
,本文編號:2231809
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2231809.html