雙極電極電化學(xué)發(fā)光生物傳感器的研究
[Abstract]:If a certain voltage is applied directly to the microcatheter or the two detection cells, the potential difference will occur between the conductor in the electric field and the interface of the solution. When the potential difference reaches a certain value, the redox reaction of the electroactive material will occur at the two ends of the conductor, which is called the bipolar electrode. In recent years, the application of bipolar electrode and electrochemiluminescence technology in life analysis and environmental monitoring has become one of the research hotspots. This method has many advantages, such as high sensitivity, low cost, simple device and so on. At present, bipolar electrochemiluminescence (BPE-ECL) technology has been successfully used in molecular screening, visual array detection of cell DNA, and so on. The research of micro and portable BPE-ECL molecular recognition platform is the focus in the future. Based on bipolar electrochemiluminescence (ECL) technology, the enhancement of ECL signal is achieved by synthesis and electrodeposition of related nanomaterials. Several different BPE-ECL detection platforms are constructed. (1) based on the BPE-ECL detection platform with ITO as the bipolar electrode, the H202 test platform is fabricated by using the ITO conductive glass with good light transmittance to make the bipolar electrode detection platform. However, ITO is easily damaged at high driving voltage, which affects the conductivity of ITO and the corresponding luminescence intensity of ECL. The purpose of the experiment is to prevent the damage of ITO and enhance the conductivity of ITO by electrodeposition of Au film on the surface of ITO. The anodic electrodeposition of PtNPs, catalyst H _ 2O _ 2 at bipolar electrode can amplify the ECL signal. The ITO and PDMS detection cells were treated by air plasma, and the BPE-ECL detection platform was constructed. The CdTe@ZnS oil quantum dots were used as luminescent, and the linear range was 1.0 脳 10 ~ (-5) -4.0 脳 10 ~ (-9) M. The minimum detection line is 5.0 脳 10 ~ (-10) m. (2) based on the BPE-ECL paper-based detection platform with lead pen core as bipolar electrode and simple and easy to obtain lead pen core as bipolar electrode, a new type of BPE-ECL detection platform is constructed, which has low cost. One-time operation, easy to carry and so on. The effect of the length and diameter of the lead pen core on the ECL signal is studied experimentally in the traditional Ru (bpy) 32 system. It is found that the larger the length and diameter of the lead pen core is, the greater the ECL intensity of the lead pen core is, and the reason can be explained by the mechanism formula of the bipolar electrode and the electrode area. In order to expand the application of the platform to biological analysis, similarly, we found that the BPE-ECL detection platform is very responsive to H2O2 by electrodeposition of PtNPs, on the lead pen core. H202, which is closely related to cell and enzyme metabolism, was successfully detected. (3) the BPE-ECL detection platform based on switch control simultaneously detected CEA synthesis and constructed an immune sandwich sensor on the ITO detection platform without etching. A ring detection platform for a light emitting cell and a plurality of sensing detection cells is prepared. The use of switches can control the reaction area and reaction time externally. Each single switch represents the same or different reactions. It can be operated simply to detect the concentration of CEA antigen in different concentrations. The synthesized Pd-PtNPs was characterized by transmission electron microscope (TEM) to enhance the ECL signal. It is found that this BPE-ECL detection platform has good stability and repeatability. Different concentrations of CEA antigens have been successfully detected at the same time.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O657.1;TP212.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 安鏡如;林金明;陳曦;;電化學(xué)發(fā)光研究及其在分析化學(xué)上的應(yīng)用[J];分析化學(xué);1991年11期
2 徐國寶,董紹俊;電化學(xué)發(fā)光及其應(yīng)用[J];分析化學(xué);2001年01期
3 張雯艷,闕肖冬,馬興剛,錢麗娜,潘維平,郭玉芹;電化學(xué)發(fā)光在分析科學(xué)中的應(yīng)用[J];中國衛(wèi)生工程學(xué);2002年01期
4 安鏡如;林金明;;新試劑5-(對-苯胺偶氮)-2,3-二氫-1,4-酞嗪二酮的電化學(xué)發(fā)光研究[J];分析化學(xué);1991年03期
5 呂家根,章竹君,鄭鵠志;電化學(xué)發(fā)光新體系及其在原位、在線、實(shí)時監(jiān)測家兔血液銅代謝過程中的應(yīng)用[J];化學(xué)學(xué)報;2002年07期
6 袁濤;劉中原;胡連哲;徐國寶;;電化學(xué)和電化學(xué)發(fā)光核酸適體傳感器[J];分析化學(xué);2011年07期
7 林金明,安鏡如;新試劑6-(2-羥基-4-二乙基氨苯偶氮)-2,3-二氫-1.4-酞嗪二酮的電化學(xué)發(fā)光研究[J];福州大學(xué)學(xué)報(自然科學(xué)版);1991年01期
8 王鵬,張文艷,周泓,朱果逸;免疫電化學(xué)發(fā)光[J];分析化學(xué);1998年07期
9 張成孝,漆紅蘭;電化學(xué)發(fā)光分析研究進(jìn)展[J];世界科技研究與發(fā)展;2004年04期
10 童碧海;梅群波;李志文;董永平;張千峰;;系列2-苯基喹啉類銥配合物的合成及電化學(xué)發(fā)光性能研究[J];化學(xué)學(xué)報;2012年23期
相關(guān)會議論文 前10條
1 呂家根;;一種新的與微型化自發(fā)電池整合的電化學(xué)發(fā)光檢測芯片研究[A];第二屆全國微全分析系統(tǒng)學(xué)術(shù)會議論文摘要集[C];2004年
2 漆紅蘭;高紅方;趙瑩;張成孝;;有機(jī)物及有機(jī)納米顆粒電化學(xué)和電化學(xué)發(fā)光行為研究[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第04分會:納米生物傳感新方法[C];2014年
3 余林頗;黃澤柱;劉揚(yáng);周明;;水溶性環(huán)金屬銥配合物的電化學(xué)發(fā)光[A];中國化學(xué)會第27屆學(xué)術(shù)年會第09分會場摘要集[C];2010年
4 楊秀榮;邱海波;嚴(yán)吉林;趙曉翠;汪爾康;;微芯片毛細(xì)管電泳電化學(xué)/電化學(xué)發(fā)光同時檢測藥物分子[A];第二屆全國微全分析系統(tǒng)學(xué)術(shù)會議論文摘要集[C];2004年
5 董曼曼;黨倩;黃銀;漆紅蘭;張成孝;;電化學(xué)發(fā)光生物傳感器測定酪蛋白激酶Ⅱ[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第04分會:納米生物傳感新方法[C];2014年
6 陳金花;林振宇;陳國南;;電化學(xué)發(fā)光猝滅法測定桑葉中黃酮類成分[A];第八屆全國發(fā)光分析暨動力學(xué)分析學(xué)術(shù)研討會論文集[C];2005年
7 胡連哲;韓雙;李海娟;徐國寶;;電化學(xué)發(fā)光分析新材料及新應(yīng)用[A];中國化學(xué)會第27屆學(xué)術(shù)年會第09分會場摘要集[C];2010年
8 張成孝;張靜;漆紅蘭;;納米磁性粒子電化學(xué)發(fā)光生物傳感新方法[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第04分會:納米生物傳感新方法[C];2014年
9 周小明;邢達(dá);;基于磁珠和納米粒子的電化學(xué)發(fā)光擴(kuò)增方法及其在高靈敏的基因檢測中的應(yīng)用[A];第十一次中國生物物理學(xué)術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
10 尹學(xué)博;辛有英;劉東元;唐春霞;趙s,
本文編號:2225661
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2225661.html