基于氧化物的多級(jí)結(jié)構(gòu)光催化能源材料的設(shè)計(jì)、優(yōu)化及性能研究
[Abstract]:The environmental problems caused by the large-scale use of fossil energy, the energy crisis caused by the increasing depletion of energy and the greenhouse effect caused by the burning product of fossil energy, CO_2, urge mankind to develop clean, pollution-free and sustainable alternative energy. The new generation of solar energy technology is the key to solve the above problems, and the key material is the key material. There is no doubt that the development of material has become the top priority. As an important member of the material family, the multi structure photocatalytic energy material based on oxide has a broad application prospect. At the same time, the photocatalytic energy materials based on oxide based photocatalytic energy materials have attracted more and more attention to the water decomposition and CO_2 reduction, but are limited to the design of materials. The optimization and the development of advanced photocatalytic system have yet to be further studied in improving the photocatalytic efficiency, designing and optimizing new and efficient photocatalysts, as well as the recovery and regeneration of the catalyst. Based on the above research status, we have carried out the research work in this paper. The construction and optimization of the excellent photocatalytic system is mainly carried out. A series of multistage structure inorganic photocatalysts are obtained through multi-stage structure design, surface defect control, and optimization of composite materials, and their photocatalytic production of H_2 and O_2 performance are studied systematically. At the same time, the construction and optimization of new type carbon based composite metal photocatalytic material, especially the system, have been found, and MOF derivation has been found. The potential applications of composites in photocatalytic CO_2 reduction are discussed. The main contents of this paper are as follows: 1. the multi shell hollow CeO_2 micronanomaterials are prepared by the "self template" synthesis strategy. The multi shell hollow CeO_2 micronano material is used for UV photocatalytic water decomposition to make O_2, compared with the hollow sphere, single shell hollow sphere and the hollow sphere. Commercial CeO_2 photocatalyst, catalytic activity and stabilizer are greatly improved. Further, in the design of material structure, the surface defects can be controlled by the crystal CeO_2 nanorods in the visible light catalytic production of O_2. Compared with the samples treated at 800 C in the air, the visible light of the CeO_2 nanorods treated with Ar-H_2 mixed gas Catalytic decomposition water activity increased by 10 times. Detailed characterization and theoretical analysis revealed that the presence of oxygen vacancy and Ce~ (3+) on the surface of CeO_2 was the key factor for the improvement of its activity. On the basis of the structure and surface of the material.2., the Cu_2O nanocluster was uniformly grown on the surface of the TiO_2 nanodisk by one pot method of hydrothermal heat, and the catalyst was used as the catalyst. The study of photocatalytic production of H_2 shows that when the surface of TiO_2 nanoparticles is loaded with nano Cu_2O clusters, the surface electron transfer is accelerated, which greatly improves the separation efficiency of the electron hole. It is more worthy of concern that Cu_2O/TiO_2 shows the effect of photocatalytic production of H_2 in the TiO_2 nanoscale disk which is higher than the Au nanoparticle load of precious metals. Excellent photocatalytic stability. It is also indicated that the surface heterojunction formed by the low cost Cu_2O cluster load is an important method to improve the efficiency of electron and hole separation,.3.. Finally, we try to control the structure and composition of the inorganic photocatalytic composite material, synthesize the layer Co-MOF74 by ultrasonic method, and carbonization in the Ar gas, and prepare the Co@C/Co-C carbon based composite, so as to realize the Co/C formation. Further, it is determined that the carbon based composite material 1200-Co@C/Co-C combined with Ru (bpy) 32+ has the highest activity in the process of CO_2 conversion and formation of CO. It is found that this kind of metal composite has super high electron transport capacity, in which the metal Co component is the living center of CO_2 reduction, while the graphite carbon composition is at CO_2 adsorption and light. The improvement of electronic transmission capacity plays an important role. More importantly, this new high stability metal like material is first proposed with the concept of metal complex molecular system (Co-C binding Ru (bpy) 32+), and the Co@C/Co-C composite is successfully applied to the visible photocatalytic CO_2 reduction.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O643.36
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;光催化分解硫化氫制氫研究獲進(jìn)展[J];化工進(jìn)展;2010年02期
2 ;光催化分解硫化氫制氫研究獲進(jìn)展[J];天津化工;2010年01期
3 ;光催化分解硫化氫制氫研究獲進(jìn)展[J];工業(yè)催化;2010年02期
4 蔡乃才,簡翠英,董慶華;有機(jī)羧酸的光催化分解反應(yīng)[J];感光科學(xué)與光化學(xué);1988年04期
5 張誼華,滕玉美,,曾憲康,王涵慧,俞稼鏞;光催化分解硫化氫制取氫氣的研究[J];感光科學(xué)與光化學(xué);1994年02期
6 溫福宇;楊金輝;宗旭;馬藝;徐倩;馬保軍;李燦;;太陽能光催化制氫研究進(jìn)展[J];化學(xué)進(jìn)展;2009年11期
7 張德;;有害的硫化氫污染物可經(jīng)光催化成有用的氫和硫[J];化學(xué)通報(bào);1982年05期
8 ;水洗再生型光催化除臭濾氣器[J];現(xiàn)代化工;2001年01期
9 甘欣;趙希娟;覃彪;傅文甫;;Pt(Ⅱ)配合物光催化制氫研究進(jìn)展[J];中國材料進(jìn)展;2010年01期
10 呂宏飛;李錦書;單雯妍;白雪峰;;多元金屬硫化物催化劑及光催化分解硫化氫的研究進(jìn)展[J];材料導(dǎo)報(bào);2012年11期
相關(guān)會(huì)議論文 前10條
1 李旦振;鄭宜;付賢智;;微波場助光催化及其應(yīng)用[A];中國電子學(xué)會(huì)第七屆學(xué)術(shù)年會(huì)論文集[C];2001年
2 殷好勇;金振聲;張順利;張治軍;;有機(jī)物分子的吸附及光催化分解對水接觸角的影響[A];2000'全國光催化學(xué)術(shù)會(huì)議論文集[C];2000年
3 付賢智;;環(huán)境光催化基礎(chǔ)與應(yīng)用研究進(jìn)展[A];第六屆全國環(huán)境催化與環(huán)境材料學(xué)術(shù)會(huì)議論文集[C];2009年
4 王崇明;;新時(shí)代——吹響了光催化號(hào)角[A];第二屆全國染整行業(yè)技術(shù)改造研討會(huì)論文集[C];2004年
5 葉云;王秀麗;馮兆池;李燦;;CdS QDs/Co complex光催化產(chǎn)氫體系的時(shí)間分辨光譜研究[A];第十七屆全國光散射學(xué)術(shù)會(huì)議摘要文集[C];2013年
6 付賢智;;環(huán)境光催化基礎(chǔ)與應(yīng)用研究新進(jìn)展[A];2004年全國太陽能光化學(xué)與光催化學(xué)術(shù)會(huì)議論文集[C];2004年
7 吳季懷;林煜;黃妙良;林建明;黃昀方;殷澍;佐藤次雄;;層狀納米光催化復(fù)合材料HNbWO_6/Pt的合成和性質(zhì)[A];2000'全國光催化學(xué)術(shù)會(huì)議論文集[C];2000年
8 賀攀科;張敏;楊冬梅;董芳;楊建軍;;微波-二元醇技術(shù)制備Au/TiO_2及其光催化消除臭氧[A];中國化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(上冊)[C];2006年
9 周航月;葛介超;汪鵬飛;;團(tuán)藻狀的Cd_(1-x)Zn_xS納米球:無模板法制備及其在可見光催化制氫應(yīng)用[A];第十三屆全國光化學(xué)學(xué)術(shù)討論會(huì)論文集[C];2013年
10 李越湘;呂功煊;李樹本;;草酸作電子給體光催化分解水制氫[A];2000'全國光催化學(xué)術(shù)會(huì)議論文集[C];2000年
相關(guān)重要報(bào)紙文章 前2條
1 記者 吳長鋒;光催化分解水制氫氣展現(xiàn)迷人前景[N];科技日報(bào);2013年
2 蔡維希 蔡忠仁;光催化分解廠房有機(jī)污染物項(xiàng)目實(shí)施[N];中國化工報(bào);2006年
相關(guān)博士學(xué)位論文 前10條
1 韋丁;硒化銦和鈦酸銦納微結(jié)構(gòu)調(diào)控與光催化制氫性能[D];北京理工大學(xué);2015年
2 伍明;氧化銀—氧化鋅復(fù)合物和改性的類石墨氮化碳的光催化性能研究[D];吉林大學(xué);2015年
3 高洪林;無機(jī)離子修飾提高g-C_3N_4光催化性能的研究[D];南京大學(xué);2014年
4 郎笛;硫化鎘光催化材料的制備及其可見光催化性能研究[D];華中農(nóng)業(yè)大學(xué);2016年
5 趙昆;基于氧化物的多級(jí)結(jié)構(gòu)光催化能源材料的設(shè)計(jì)、優(yōu)化及性能研究[D];北京科技大學(xué);2017年
6 于笑瀟;分等級(jí)納米復(fù)合光催化材料的制備及其光催化性能研究[D];武漢理工大學(xué);2010年
7 陳秀芳;石墨相氮化碳的制備、表征及其光催化性能研究[D];福州大學(xué);2011年
8 鄭艷;鉍復(fù)合氧化物的合成及其可見光光催化性能研究[D];江南大學(xué);2011年
9 劉美英;鉭基氮氧化物上可見光光催化分解水制氫研究[D];中國科學(xué)院研究生院(大連化學(xué)物理研究所);2006年
10 徐新;水滑石基半導(dǎo)體復(fù)合材料的制備及其光催化性能研究[D];北京化工大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 李鑫;新型MoS_2/TiO_2復(fù)合材料的合成及光催化性能探究[D];上海師范大學(xué);2015年
2 王雋;釕基光敏劑的合成及其在TiO_2光催化體系中的催化性能研究[D];鄭州大學(xué);2015年
3 李云;上轉(zhuǎn)光劑-NaTaO_3-助催化劑體系在光催化水解制氫中的應(yīng)用及相關(guān)影響因素的研究[D];遼寧大學(xué);2015年
4 李宏穎;TiO_2@酵母微球的調(diào)控合成及其催化性能研究[D];長安大學(xué);2015年
5 張亞軍;微納枝狀結(jié)構(gòu)ZnFe_2O_4的制備與改性及光催化性能研究[D];哈爾濱工業(yè)大學(xué);2015年
6 李孜;氮摻雜碳量子點(diǎn)的熒光分析檢測及光催化性能研究[D];北京化工大學(xué);2015年
7 張松;二氧化鈦光催化制氫的失活機(jī)理研究[D];南京大學(xué);2013年
8 劉輝;多孔SrTiO_3納米晶的制備及其光催化性能研究[D];南京大學(xué);2014年
9 徐鵬;介孔二氧化鈦基復(fù)合催化劑的制備及其光催化性能研究[D];吉首大學(xué);2015年
10 何靜;鉍氧化物及其復(fù)合物的制備與光催化性能研究[D];重慶大學(xué);2015年
本文編號(hào):2160417
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2160417.html