含金屬分子體系的勢能面構(gòu)建與反應(yīng)動力學(xué)研究
[Abstract]:The reaction between the alkali metal (or alkaline earth metal) and the halogen molecules has an important reaction mechanism "HarpoonMechanism", that is, the active electrons in the outer layer of the metal atoms jump first to the halogen molecules and form an unstable anion molecule, which will rapidly dissociate and form the metal containing the metal. In this paper, we use the Chebyshev wave packet method and the quasi classical trajectory method (QCT) to conduct a detailed kinetic study of the Ca + HCl (?) H + CaCl reaction in this paper. In this paper, we also use the LAN cable iterative method to obtain the HCaCl body. In addition, we have constructed a high-precision ab initio potential energy surface for the Li+HCl reaction and carried out full dimensional quantum dynamics calculation of the system. Our work mainly includes the following aspects: the kinetics of the 1.Ca + H/DCl reaction and the bound state energy level theory of the HCaCl system: Based on the VSGRA potential energy surface (J.Chem.P) Hys.122 (2005) 204307) we have first obtained the exact quantum reaction probability of the Ca + HCl reaction, and studied the isotopic effect of the reaction. Because of the existence of a deep potential well and the system containing two heavier atoms, we have met a great challenge in the process of calculation. The reaction probability shows a strong resonance phenomenon and the reaction probability increases with the increase of the collision energy. The Coriolis effect is not negligible for the reaction probability of the Ca + HCl reaction to J0. We also use the QCT method to obtain the reaction probability of the Ca + H/DCl reaction, and compare the probability of the reaction of the.QCT with the quantum reaction probability and the probability of the reaction. The quantum results are good, but the results of QCT fail to repeat the quantum resonance structure. By comparing the probability of reaction between Ca + HCl and Ca + DCl, we find that the zero energy effect plays an important role in the vicinity of the threshold energy. The differential reaction cross section and vibration distribution of the product are given by the QCT method. Through the analysis of the above results, we find that the indirect reaction mechanism is the main reaction mechanism of the Ca + HCl reaction. By using the LAN cable iteration method, 7716 energy levels of the potential energy surface deep potential well are obtained, and 254 energy levels with the lowest energy levels are recognized. The eigenenergy level distribution of low energy and high energy suggests that when the intrinsic energy level is lower than 12000cm-1, the wave function has a weak coupling mode. At the middle and high energy, the Fermi resonance leads to some slight distortion of the wave function, and the energy level spacing of these wave functions is very small.2. quasi classical trajectories and quantities. The theoretical study on the reaction and isotope reaction of H + CaCl (X 2 sigma +) to HCl + Ca (S) by wavelet packet method: we use the quasi classical trajectory (QCT) and quantum wave packet method to obtain the total angular momentum of H + CaCl (vi=0, ji=0) as J=0,10, and the reaction probability of 20, and the integral and differential reaction cross sections are obtained. When the quantum resonance effect is reproduced, the result of QCT is very good with the probability of the quantum reaction. Although the reaction is a exothermic reaction and the barrier height of the reaction is lower than the energy of the reactant channel, the reaction probability of the reaction J=0 has a threshold energy and a lower reaction probability near the threshold energy (0.1 eV). The reaction probability is divided into two different regions based on the size of the collision energy: the low energy region (0.35 eV) and the high energy region (0.35 eV). By analyzing the dynamic information of the two regions, we find that the reaction has different reaction mechanisms in the two regions. In the high energy region, the direct reaction mechanism is dominant. In addition, we also use the QCT method to obtain the vibrational distribution of the reaction products and the initial collision angle distribution. Based on the same potential energy surface, we also study the D + CaCl reaction with the method of QCT and the quantum wave packet. The quantum and QCT reaction probability of the inverse response to J = 0 is given, and the QCT side is used. The method obtained the integral of the reaction, the differential reaction cross section and the vibration distribution of the product. In the qualitative way, the isotope substitution will not change the basic kinetic characteristics of the system. Therefore, we have obtained the similar conclusion with the H + CaCl reaction: in the low energy (~ 0.4 eV), the indirect reaction mechanism is dominant, and the direct reaction mechanism is at high energy (~ 0.4 eV). On the quantitative basis, the isotope substitution can increase the reaction probability and the ab initio potential energy surface of the reaction section.3.LiHCl system to construct the quantum dynamics calculation with the reaction of Li + HCl (v=0, j=0-2) to LiCl + H: we have obtained 36654 ab initio data points using MRCI+Q/aug-cc-pV5Z method. Then the three spline fitting method is used for this method. Some data points are fitted to obtain the ground state adiabatic potential energy surface for the Li+HCl reaction. The result shows that the reaction is a exothermic reaction and the energy released is consistent with the experimental results, and its value is 5.63 kcal/mol (9 kcal/mol under the consideration of zero point energy). The potential barrier height of the potential energy surface is 2.99 kcal/mol (after considering the zero point energy, the barrier is high. " The Van Der Waals potential well characteristics at the entrance of the reaction channel are also consistent with the experimental data. We also found two other Van Der Waals potential wells and gave their structural characteristics. Finally, we use the Chebyshev wave packet method to give the integral reaction cross section and reaction rate of different rotation starting states. The results are all in good agreement with the experimental data.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O643.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 商城;劉智攀;;自動化勢能面搜索方法新進(jìn)展[J];中國科學(xué):化學(xué);2013年12期
2 辛厚文,廖結(jié)樓;勢能面上的分叉反應(yīng)[J];科學(xué)通報;1994年03期
3 訾金棟,李淑蘭;BEBO法計算活化勢能的研究[J];山東師大學(xué)報(自然科學(xué)版);1998年03期
4 孫發(fā)增;;勢能面—過渡狀態(tài)理論的物理模型[J];安徽大學(xué)學(xué)報(自然科學(xué)版);1984年02期
5 盧英林,韋平;分子反應(yīng)的勢能面圖示[J];紡織高;A(chǔ)科學(xué)學(xué)報;1995年02期
6 陳茂篤,唐壁玉,韓克利,樓南泉;Cl+HD反應(yīng)產(chǎn)物的極化與態(tài)分布(英文)[J];化學(xué)物理學(xué)報;2002年04期
7 孫延波,吳迪,李澤生,黃旭日,孫家鍾;乙硼烷離子和自由基異構(gòu)體重排與體系勢能面的量子化學(xué)計算研究[J];高等學(xué);瘜W(xué)學(xué)報;2002年09期
8 俞華根,沈守瑤;勢能面的繪圖程序[J];成都科技大學(xué)學(xué)報;1994年02期
9 韓克利,何國鐘,樓南泉;勢壘位置對產(chǎn)物轉(zhuǎn)動取向的影響[J];化學(xué)物理學(xué)報;1996年06期
10 陳樹滋,查昆薇;CO在Ni(100)面吸附模式的研究[J];高等學(xué);瘜W(xué)學(xué)報;1992年06期
相關(guān)會議論文 前10條
1 傅碧娜;;復(fù)雜多原子反應(yīng)的勢能面構(gòu)建和動力學(xué)研究[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第39分會:化學(xué)動力學(xué)[C];2014年
2 李全松;Annapaola Migani;Lluís Blancafort;;勢能面交叉線上的光化學(xué):光誘導(dǎo)的沃爾夫重排和聚集誘導(dǎo)發(fā)光效應(yīng)[A];中國化學(xué)會第28屆學(xué)術(shù)年會第13分會場摘要集[C];2012年
3 周琳森;謝代前;;水分子激發(fā)態(tài)鉛~1B_1從頭算勢能面[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第39分會:化學(xué)動力學(xué)[C];2014年
4 傅碧娜;;多原子復(fù)雜分子反應(yīng)的勢能面構(gòu)建和動力學(xué)研究[A];第十三屆全國化學(xué)動力學(xué)會議報告摘要集[C];2013年
5 張圣濤;米衛(wèi)紅;郝策;;Ca在C_(74)籠內(nèi)的運動[A];中國化學(xué)會第九屆全國量子化學(xué)學(xué)術(shù)會議暨慶祝徐光憲教授從教六十年論文摘要集[C];2005年
6 潘勝;薛佳丹;鄭旭明;;異丁烯醛激發(fā)態(tài)勢能面交叉動力學(xué)研究[A];第十三屆全國化學(xué)動力學(xué)會議報告摘要集[C];2013年
7 王悅;鳳爾銀;董書寶;黃武英;屈奎;;He-Na_2的從頭算勢能面及其動力學(xué)研究[A];第九屆全國化學(xué)動力學(xué)會議論文摘要集[C];2005年
8 王滿輝;孫孝敏;邊文生;;基于一個H+SiH_4全維勢能面的動力學(xué)分析[A];第九屆全國化學(xué)動力學(xué)會議論文摘要集[C];2005年
9 孫志剛;;F+H_2反應(yīng)的全域高精度勢能面[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第39分會:化學(xué)動力學(xué)[C];2014年
10 吳廣新;張捷宇;李謙;周國治;;H在MgH_2表面的吸附研究[A];2010年全國冶金物理化學(xué)學(xué)術(shù)會議專輯(上冊)[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 馬永濤;范德華復(fù)合物OCS-He、CH_3F-Rg及CH_3F-H_2的摩斯長程勢勢能面和振轉(zhuǎn)光譜的理論研究[D];吉林大學(xué);2016年
2 賀非非;含能型分子的結(jié)構(gòu)和穩(wěn)定性的量子化學(xué)研究[D];吉林大學(xué);2016年
3 侯丹;大振幅范德華混合物H_2O-Rg(He、Ne、Ar)及H_2-C_2H_2的勢能面和振轉(zhuǎn)光譜的理論研究[D];吉林大學(xué);2016年
4 譚瑞山;含金屬分子體系的勢能面構(gòu)建與反應(yīng)動力學(xué)研究[D];山東大學(xué);2017年
5 李絳;分子復(fù)合物中氫鍵和勢能面的理論研究[D];四川大學(xué);2003年
6 商城;勢能面搜索新方法的發(fā)展及其在復(fù)雜非均相催化反應(yīng)研究中的應(yīng)用[D];復(fù)旦大學(xué);2013年
7 蔣彬;從氣相到金屬表面的小分子勢能面與量子動力學(xué)的理論研究[D];南京大學(xué);2012年
8 林森;半導(dǎo)體小分子勢能面及其光譜的理論研究[D];南京大學(xué);2011年
9 朱華;Rg_n-N_2O型復(fù)合物的分子間勢能面和振轉(zhuǎn)光譜的理論研究[D];四川大學(xué);2002年
10 王玲;單分子反應(yīng)理論研究和勢能面的構(gòu)建[D];中國科學(xué)院研究生院(大連化學(xué)物理研究所);2006年
相關(guān)碩士學(xué)位論文 前10條
1 劉芳;磷鍵和鹵鍵作用的理論研究[D];山東大學(xué);2015年
2 肖晨霞;使用量子拓?fù)湎鄨D對勢能面提出的“分子中的原子”量子理論觀點[D];湖南師范大學(xué);2015年
3 楊海琴;Ar-BeH(X~2Σ~+)體系的冷碰撞動力學(xué)研究[D];安徽師范大學(xué);2015年
4 王申浩;Ar-D_2O體系四維勢能面和光譜預(yù)測:v_2正則模相關(guān)[D];安徽師范大學(xué);2015年
5 陳柳楊;構(gòu)建多維化學(xué)反應(yīng)勢能面新方法[D];中國科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2016年
6 李琦;H+HLi體系勢能面及動力學(xué)研究[D];山東師范大學(xué);2016年
7 何珊珊;Ne-D_2O體系的四維勢能面和v_2正則模下的紅外光譜研究[D];安徽師范大學(xué);2016年
8 夏修龍;偶氮類分子光致異構(gòu)反應(yīng)的勢能面特征[D];四川大學(xué);2002年
9 李安陽;小分子勢能面的構(gòu)建及算法研究[D];西北大學(xué);2006年
10 王曉林;三原子反應(yīng)體系勢能面的動力學(xué)李代數(shù)方法[D];山東大學(xué);2005年
,本文編號:2139671
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2139671.html