天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化學(xué)論文 >

固溶鉭原子與晶界偏析鉭原子對(duì)納米晶銅力學(xué)性能的影響

發(fā)布時(shí)間:2018-07-17 04:35
【摘要】:最近幾十年,納米晶材料受到了極大的關(guān)注,越來(lái)越多的人開(kāi)始投入到納米晶材料的研究中。這種尺寸的材料不僅擁有優(yōu)異的機(jī)械性能,例如高的強(qiáng)度和高的應(yīng)變速率敏感性,而且還有很好的物理特性,如磁性。這種優(yōu)異的特性來(lái)源于它超小的晶粒尺寸,或者說(shuō)是它擁有的高的晶界體積分?jǐn)?shù),即所謂的尺寸效應(yīng)。但是這種高的晶界體積分?jǐn)?shù)同時(shí)也帶來(lái)了一些問(wèn)題,內(nèi)部不穩(wěn)定是一個(gè)很大的問(wèn)題。很多納米晶材料,無(wú)論是用于基礎(chǔ)研究,還是工程應(yīng)用,現(xiàn)在被認(rèn)為實(shí)質(zhì)上是處于非平衡狀態(tài),即使在常溫下也會(huì)自發(fā)的向粗晶轉(zhuǎn)變。這種粗晶化趨勢(shì)妨礙了其在室溫下的應(yīng)用,特別是當(dāng)它作為需要使用很長(zhǎng)時(shí)間的結(jié)構(gòu)材料。納米晶材料的粗晶化趨勢(shì)主要是由晶界的內(nèi)部活動(dòng)(例如晶界滑移、遷移、翻轉(zhuǎn))所造成的,盡管這些晶界活動(dòng)是提高塑性變形所必需的,但是,為了獲得穩(wěn)定的結(jié)構(gòu)和納米晶材料所具有的優(yōu)異特性,我們?nèi)匀恍枰浦顾J褂霉虘B(tài)不溶的元素進(jìn)行合金化是一種非常有效的方法,類(lèi)比于在乳濁液中添加表面活性劑可以穩(wěn)定表面區(qū)域,不溶的的元素會(huì)分布于晶界,從而會(huì)減小自由能,并且減緩晶粒生長(zhǎng),不溶的元素還能在晶界起著釘扎的作用。銅鉭是一個(gè)非常適合的系統(tǒng),這個(gè)系統(tǒng)的每個(gè)組元具有不同的晶體結(jié)構(gòu),在固態(tài)下具有非常小的互溶度。鉭原子的原子半徑遠(yuǎn)大于銅原子的,這會(huì)使得鉭原子分布在銅的晶界處。在本次試驗(yàn)中,使用磁控濺射的方法在玻璃基體上制備出了厚度約為6微米的納米晶銅和銅鉭合金(鉭5%)薄膜,兩種薄膜是在同樣的條件下得到的,將不溶性的納米晶銅鉭合金體系與納米晶銅進(jìn)行了對(duì)比。使用X射線(xiàn)衍射儀對(duì)納米晶銅和納米晶銅鉭合金試樣的微觀結(jié)構(gòu)進(jìn)行了分析,使用透射電子顯微鏡對(duì)其表面形貌進(jìn)行了觀察,使用納米壓痕儀對(duì)其力學(xué)性能進(jìn)行了測(cè)定,通過(guò)對(duì)比發(fā)現(xiàn)納米晶銅和納米晶銅鉭合金試樣具有相同的晶體結(jié)構(gòu)和晶粒尺寸,納米晶銅鉭合金在室溫下具有更高的硬度和抗蠕變性能,說(shuō)明鉭原子的固溶添加不會(huì)改變納米晶銅的晶體結(jié)構(gòu),可以提高納米晶銅的力學(xué)性能。將制備的納米晶銅和納米晶銅鉭合金試樣進(jìn)行一定溫度的回火處理,使用X射線(xiàn)衍射儀對(duì)納米晶銅和納米晶銅鉭合金試樣的微觀結(jié)構(gòu)進(jìn)行了分析,使用透射電子顯微鏡對(duì)其表面形貌進(jìn)行了觀察,使用納米壓痕儀對(duì)其力學(xué)性能進(jìn)行了測(cè)定,通過(guò)對(duì)比發(fā)現(xiàn)經(jīng)過(guò)回火處理后,納米晶銅鉭合金中的鉭原子向晶界偏析,納米晶銅鉭合金具有更高的硬度和抗蠕變性能,說(shuō)明晶界偏析鉭原子可以提高納米晶銅的力學(xué)性能和熱穩(wěn)定性。
[Abstract]:In recent decades, nanocrystalline materials have received great attention, and more people begin to study nanocrystalline materials. The material of this size not only has excellent mechanical properties, such as high strength and high strain rate sensitivity, but also has good physical properties, such as magnetism. This excellent property comes from its ultra-small grain size, or its high grain boundary volume fraction, known as the size effect. But this kind of high grain boundary volume fraction also brings some problems, internal instability is a big problem. Many nanocrystalline materials, whether used in basic research or engineering applications, are now considered to be essentially in a non-equilibrium state, even at room temperature will spontaneously change to coarse crystal. This trend of coarse crystallization hinders its application at room temperature, especially when it is used as a structural material for a long time. The trend of coarse crystallization of nanocrystalline materials is mainly caused by the internal activities of grain boundaries (such as grain boundary slip, migration, turnover). Although these grain boundary activities are necessary to increase plastic deformation, however, In order to obtain stable structure and excellent properties of nanocrystalline materials, we still need to stop it. Alloying with solid insoluble elements is a very effective method, analogous to the fact that adding surfactants to the emulsion stabilizes the surface area, and the insoluble elements distribute at the grain boundaries, thus reducing the free energy. And slow down the grain growth, insoluble elements can also play the role of pinning at grain boundaries. Copper tantalum is a very suitable system. Each component of the system has a different crystal structure and a very small mutual solubility in solid state. The atomic radius of tantalum atom is much larger than that of copper atom, which causes the tantalum atom to distribute at the grain boundary of copper. In this experiment, nanocrystalline copper and copper tantalum alloy (5% tantalum) thin films with thickness of about 6 microns were prepared on glass substrates by magnetron sputtering. The insoluble nanocrystalline copper-tantalum alloy system was compared with nano-crystalline copper. The microstructure of nanocrystalline copper and nanocrystalline copper-tantalum alloy samples was analyzed by X-ray diffractometer. The surface morphology of nanocrystalline copper and tantalum alloy was observed by transmission electron microscope, and the mechanical properties were measured by nano-indentation instrument. It is found that nanocrystalline copper and nanocrystalline copper tantalum alloys have the same crystal structure and grain size, and nanocrystalline copper tantalum alloys have higher hardness and creep resistance at room temperature. The results show that the addition of tantalum in solid solution can not change the crystal structure of nanocrystalline copper and can improve the mechanical properties of nanocrystalline copper. The microstructure of nanocrystalline copper and nanocrystalline copper-tantalum alloy samples was analyzed by X-ray diffraction (XRD) after tempering the samples of nanocrystalline copper and nanocrystalline copper tantalum. The surface morphology of nanocrystalline copper tantalum alloy was observed by transmission electron microscope and its mechanical properties were measured by nano-indentation instrument. It was found that after tempering, tantalum atoms in nanocrystalline copper-tantalum alloy segregated to grain boundary. Nanocrystalline copper-tantalum alloy has higher hardness and creep resistance, indicating that grain boundary segregation of tantalum atoms can improve the mechanical properties and thermal stability of nanocrystalline copper.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O614.121;TB383.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王松林;;船軸的熱處理及其力學(xué)性能[J];大型鑄鍛件;1987年03期

2 ;力學(xué)性能二級(jí)人員取證復(fù)習(xí)參考題(之一)解答[J];理化檢驗(yàn)(物理分冊(cè));1997年12期

3 ;力學(xué)性能二級(jí)人員取證復(fù)習(xí)參考題(之三)解答[J];理化檢驗(yàn)(物理分冊(cè));1998年04期

4 陳金寶;高溫力學(xué)性能二級(jí)人員取證復(fù)習(xí)參考題(持久部分之五)解答[J];理化檢驗(yàn)(物理分冊(cè));2000年02期

5 潘葉金;電弧熔鑄的Nb-18Si-5Mo-5Hf-2C復(fù)合材料的力學(xué)性能[J];中國(guó)鉬業(yè);2003年03期

6 張美忠,李賀軍,李克智;三維編織復(fù)合材料的力學(xué)性能研究現(xiàn)狀[J];材料工程;2004年02期

7 游宇,周新貴;三維編織復(fù)合材料的力學(xué)性能[J];纖維復(fù)合材料;2004年04期

8 羅文波;唐欣;譚江華;趙榮國(guó);;流變材料長(zhǎng)期力學(xué)性能加速表征的若干進(jìn)展[J];材料導(dǎo)報(bào);2007年07期

9 嚴(yán)振宇;徐強(qiáng);朱時(shí)珍;劉穎;;Sm_2Zr_2O_7-ZrB_2/SiC復(fù)合材料的制備及力學(xué)性能研究[J];稀有金屬材料與工程;2011年S1期

10 瞿欣;孫汝n,

本文編號(hào):2129033


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/2129033.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)5998f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
亚洲最大福利在线观看| 亚洲精品成人福利在线| 日韩综合国产欧美一区| 色鬼综合久久鬼色88| 亚洲高清中文字幕一区二三区| 国自产拍偷拍福利精品图片| 欧美国产日韩在线综合| 手机在线观看亚洲中文字幕| 91亚洲人人在字幕国产| 九九热在线免费在线观看| 五月的丁香婷婷综合网| 欧美色欧美亚洲日在线| 亚洲精品日韩欧美精品| 日韩欧美中文字幕人妻| 亚洲最大的中文字幕在线视频| 中文字幕亚洲精品人妻| 日本精品中文字幕在线视频| 国产亚洲精品一二三区| 偷拍美女洗澡免费视频| 国产一区二区三区精品免费| 人妻中文一区二区三区| 99久久精品一区二区国产| 黄片在线免费看日韩欧美| 狠狠做五月深爱婷婷综合| 国产传媒中文字幕东京热| 91麻豆精品欧美视频| 色丁香之五月婷婷开心| 久久精品亚洲情色欧美| 懂色一区二区三区四区| 国产女同精品一区二区| 精品人妻一区二区三区在线看| 亚洲男人的天堂色偷偷| 日韩欧美一区二区不卡视频| 日本深夜福利视频在线| 老司机亚洲精品一区二区| 国产精品国产亚洲区久久| 麻豆亚州无矿码专区视频| 日韩综合国产欧美一区| 成人免费高清在线一区二区| a久久天堂国产毛片精品| 国产午夜福利片在线观看|