天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化學(xué)論文 >

N-取代羧酸聚苯胺接枝石墨烯硫化鎘量子點光電材料的研究

發(fā)布時間:2018-07-02 09:27

  本文選題:石墨烯 + NPAN。 參考:《華東交通大學(xué)》2017年碩士論文


【摘要】:隨著世界上固有能源的大量消耗及對環(huán)境所造成的不可逆影響,人類對于新能源的需求迫在眉睫。而太陽能作為一種清潔、高效、安全的能源備受矚目,且伴隨光電轉(zhuǎn)換技術(shù)的不斷改進(jìn),以半導(dǎo)體光催化劑在太陽光下進(jìn)行光電轉(zhuǎn)換,實現(xiàn)對清潔新能源的合理利用引起研究者們廣泛關(guān)注,并且由于半導(dǎo)體類光催化劑良好的催化效果,其在降解有機污染物與產(chǎn)氫兩方面具有良好的應(yīng)用前景。本文旨在研制出一種新型的N-取代羧酸聚苯胺接枝石墨烯硫化鎘量子點復(fù)合材料,以用作催化效率高、循環(huán)穩(wěn)定性好的光催化劑。在該復(fù)合材料中三組分材料間通過共價接枝作用連接,不僅體現(xiàn)了良好的協(xié)同效應(yīng)和界面間作用力,還抑制了各單一組分所存在的缺陷,從而提高了可見光下光電轉(zhuǎn)換的效率。具體的研究內(nèi)容及相關(guān)結(jié)果如下:1.以苯胺功能化的還原氧化石墨烯為基體,在原位聚合體系中引入N-苯基甘氨酸與乙酸鎘形成含鎘前驅(qū)體,再利用鎘與硫間成核機理制備出復(fù)合材料。同時,利用不同途徑制備出各種CdS及CdS類復(fù)合材料作為對比。通過利用FT-IR、UV-vis、XPS、TEM、TG、Roman、PL等對不同材料的結(jié)構(gòu)、穩(wěn)定性、形貌等展開探究,結(jié)果證明了CdS量子點成功的以共價接枝的方式與石墨烯、聚苯胺相連接,且由于高速導(dǎo)電子性石墨烯的引入及N-取代羧酸聚苯胺對于硫化鎘量子點的保護(hù),良好的抑制了CdS的易團聚及光生電子空穴易復(fù)合的缺陷。2.采取滴涂法制備出各種CdS復(fù)合材料修飾電極,并通過利用CV和EIS對修飾電極的電化學(xué)性質(zhì)展開探究。首先就光照與黑暗條件下,RGO/NPAN-CdS修飾用量、掃描速度、p H等對于該修飾電極活性的影響進(jìn)行優(yōu)化。然后經(jīng)過對比各個修飾電極的CV圖與EIS圖,得出各電極電子傳導(dǎo)能力的差異。最后通過對RGO/NPAN-CdS電極進(jìn)行循環(huán)掃描以檢測其穩(wěn)定性。通過電化學(xué)檢測證明了:CdS量子點在可見光下能夠進(jìn)行良好光電轉(zhuǎn)換、增強光電流,且由于石墨烯與NPAN的引入,RGO/NPAN-CdS具有更短的界面距離和更快的電子傳輸速度,在不同CdS復(fù)合材料內(nèi)其具有最高的電活性和最小的電阻,且其穩(wěn)定性隨循環(huán)使用依舊保持良好,因此具有應(yīng)用于實際電化學(xué)傳感器的潛力。3.在500 W氙燈光源照射下,以純CdS及不同CdS復(fù)合材料為光活性材料進(jìn)行光催化降解有機污染物Rh B和光催化水產(chǎn)H2反應(yīng)。首先對于RGO/NPAN-CdS的使用p H與溫度進(jìn)行優(yōu)化,得出最佳使用條件。然后對比不同CdS類光活性劑降解Rh B與催化產(chǎn)H2能力,得出最佳的催化效果。最后對CdS類材料光催劑的循環(huán)使用性展開探索,并通過利用TEM和XRD等對材料光催化前后結(jié)構(gòu)的穩(wěn)定性進(jìn)行表征。通過研究能夠發(fā)現(xiàn):RGO/NPAN-CdS在光催化反應(yīng)中皆表現(xiàn)出最高的催化效率與反應(yīng)速率,其降解Rh B的效率和產(chǎn)H2量分別為單純CdS的1.94倍于8.6倍,且相較于CdS在光照次數(shù)增多后結(jié)構(gòu)被腐蝕、催化效率下降的情況,RGO/NPAN-CdS的結(jié)構(gòu)及光催化的效率都保持良好,這證明了RGO/NPAN-CdS有實際應(yīng)用于光催化劑的潛力。
[Abstract]:With the enormous consumption of natural energy and the irreversible effect on the environment, the demand for new energy is imminent. As a clean, efficient and safe energy, the solar energy has attracted much attention, and with the continuous improvement of the photoelectric conversion technology, the photoelectric conversion of the semi conductor photocatalyst in the solar light is realized. The rational use of clean new energy has attracted the attention of researchers and has a good application prospect in the two aspects of degradation of organic pollutants and hydrogen production due to the good catalytic effect of semiconductor photocatalyst. This paper aims to develop a new type of N- substituted carboxylic acid polyphenylene graft graphene grafted cadmium sulphide quantum dots composite material It is used as a photocatalyst with high catalytic efficiency and good cycling stability. The covalent graft interaction between three components in the composite not only reflects the good synergistic effect and inter interface force, but also inhibits the defects in the single group, and raises the efficiency of photoelectric conversion under visible light. The content and the related results are as follows: 1. the precursor of N- phenyl glycine and cadmium acetate is introduced in the in-situ polymerization system by the functionalized reduced graphene oxide as the matrix, and the composite material is prepared by the mechanism of cadmium and sulfur. At the same time, various kinds of CdS and CdS composite materials are prepared by different ways as a contrast. FT-IR, UV-vis, XPS, TEM, TG, Roman, PL, etc. have been used to explore the structure, stability and morphology of different materials. The results show that the CdS quantum dots have been successfully linked with graphene, polyaniline, and the introduction of high speed electronic graphene and the protection of the CdS quantum dots by the N- substituted carboxylic polyaniline. It has a good inhibition of the easy reunion of CdS and the defect that the photoelectron hole is easy to compound.2.. Various CdS composite modified electrodes are prepared by the drop coating method, and the electrochemical properties of the modified electrodes are explored by using CV and EIS. First, under the light and dark conditions, the dosage of RGO/NPAN-CdS trimming, the scanning speed, and the P H and so on are used for this modification. The effect of the polar activity was optimized. Then the differences in the electronic conductivity of each electrode were obtained by comparing the CV and EIS diagrams of each modified electrode. Finally, the stability was detected by cyclic scanning of the RGO/NPAN-CdS electrode. It was proved by electrochemical detection that the CdS quantum dots could have good photoelectric conversion and enhanced light under the visible light. Current, and because of the introduction of graphene and NPAN, RGO/NPAN-CdS has shorter interface distance and faster electronic transmission speed. It has the highest electrical activity and minimum resistance in different CdS composites, and its stability remains good with the use of circulation. Therefore, the potential of application to practical electrochemical sensors is at 500 W. Under the irradiation of xenon lamp light source, YISHION CdS and different CdS composites were used for photocatalytic degradation of organic pollutants Rh B and photocatalytic aquatic H2 reaction. First, the optimum use conditions were obtained for RGO/NPAN-CdS using P H and temperature, and then compared the degradation of Rh B and catalytic H2 capacity by different CdS type light active agents. A good catalytic effect. Finally, the recycling of CdS materials was explored, and the stability of the structure was characterized by using TEM and XRD. Through the study, it was found that RGO/NPAN-CdS showed the highest catalytic efficiency and reaction rate in the photocatalytic reaction, the efficiency of degradation of Rh B and the production of H2. The amount of RGO/NPAN-CdS is 1.94 times more than 8.6 times of pure CdS, and the structure and photocatalytic efficiency of the RGO/NPAN-CdS have been kept good compared to the corrosion of the structure and the decrease of the catalytic efficiency, which proves that the RGO/NPAN-CdS has the potential to be applied to the photocatalyst.
【學(xué)位授予單位】:華東交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB33;O643.36

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王克;王甫麗;薛紅丹;劉樸;柏永清;;CdS/石墨烯納米復(fù)合材料的制備及其光催化性能[J];中國陶瓷;2016年01期

2 于小雯;石高全;;石墨烯/高分子復(fù)合薄膜的制備及應(yīng)用[J];高分子學(xué)報;2014年07期

3 何霞;劉海瑞;董海亮;梁建;張華;許并社;;ZnO/In_2O_3納米異質(zhì)結(jié)的合成及其光催化性能的研究[J];無機材料學(xué)報;2014年03期

4 吳娟霞;徐華;張錦;;拉曼光譜在石墨烯結(jié)構(gòu)表征中的應(yīng)用[J];化學(xué)學(xué)報;2014年03期

5 張新;陳琳;王海芳;曹傲能;;一步微波法制備石墨烯-硫化鎘納米復(fù)合材料[J];無機化學(xué)學(xué)報;2013年08期

6 周田;陳炳地;姚愛華;王德平;;CdS/石墨烯納米復(fù)合材料的超聲化學(xué)法制備及光催化性能[J];無機化學(xué)學(xué)報;2013年02期

7 陸東梅;楊瑞霞;孫信華;吳華;郝建民;;石墨烯的SiC外延生長及應(yīng)用[J];半導(dǎo)體技術(shù);2012年09期

8 劉美英;白丹;許志玲;林春明;單楠楠;李柏娜;;硫化鎘和硫化銀與多壁碳納米管復(fù)合材料合成的研究[J];材料開發(fā)與應(yīng)用;2011年05期

9 邵茂盛;;我國生物柴油急需政策扶持[J];中國石化;2006年04期

10 雍興躍,劉景軍,林玉珍;流動腐蝕介質(zhì)中雙相不銹鋼的電化學(xué)阻抗譜[J];化工學(xué)報;2003年12期

相關(guān)博士學(xué)位論文 前1條

1 劉洋;基于二維納米MoS_2和石墨烯的光催化劑的制備及其產(chǎn)氫性能研究[D];大連理工大學(xué);2014年

相關(guān)碩士學(xué)位論文 前8條

1 關(guān)婷婷;基于石墨烯/N取代羧酸聚苯胺復(fù)合修飾電極對亞硝酸根的電催化性能研究[D];華東交通大學(xué);2015年

2 高健;基于N-取代羧基聚苯胺共價接枝石墨烯復(fù)合材料的合成與電化學(xué)性能研究[D];華東交通大學(xué);2015年

3 張航;石墨烯/金屬納米粒子復(fù)合材料的制備及電催化性能研究[D];湖南大學(xué);2014年

4 孫璐;活性層摻雜對聚合物太陽能電池的性能影響研究[D];吉林大學(xué);2014年

5 王浩;新型水溶性N-取代羧基改性芳香胺導(dǎo)電聚合物的合成與性能研究[D];華東交通大學(xué);2013年

6 楊晨t,

本文編號:2089679


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/2089679.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ef2bb***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com