天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 化學論文 >

近紅外光譜技術(shù)在嬰幼兒營養(yǎng)米粉快速檢測中的應(yīng)用研究

發(fā)布時間:2018-06-28 20:20

  本文選題:近紅外光譜技術(shù) + 嬰幼兒營養(yǎng)米粉 ; 參考:《東華理工大學》2017年碩士論文


【摘要】:雖然嬰幼兒營養(yǎng)米粉中蛋白質(zhì)、脂肪、膳食纖維、水分、灰分等的常規(guī)檢測方法相對成熟、準確度高,但預(yù)處理過程復雜、試劑消耗量大、成本高、耗時長,且需要專用儀器和設(shè)備,制約了檢測、生產(chǎn)及科研的效率。與常規(guī)檢測技術(shù)相比,近紅外光譜(NIR)技術(shù)具有高效、無需預(yù)處理、成本低、無損、綠色環(huán)保等優(yōu)點,可同時測定多目標組分的含量。本課題采取近紅外光譜技術(shù),并結(jié)合化學計量學法,開展了嬰幼兒營養(yǎng)米粉上述成分的定量分析研究。探討了近紅外光譜技術(shù)在預(yù)測建模中的重要問題,包括樣品的采集和制備、試驗參數(shù)的選擇、光譜的采集、數(shù)據(jù)處理及模型建立等,最后驗證建立的模型。主要研究內(nèi)容與結(jié)論如下:1、本課題收集了2015年至2016年食品藥品監(jiān)督管理部門在江西省境內(nèi)開展質(zhì)量監(jiān)管過程中抽檢的嬰幼兒營養(yǎng)米粉樣品,品牌包括亨氏、每一、雅士利、貝因美、美廬、安培等,并從中抽取160批次,采用傳統(tǒng)化學技術(shù)分別檢定了其中的蛋白質(zhì)、脂肪、膳食纖維、水分、灰分的含量,為近紅外光譜定量分析模型的校正提供了基礎(chǔ)。2、本課題采用近紅外光譜技術(shù)同時檢測了160個樣品中蛋白質(zhì)、脂肪、膳食纖維、水分和灰分的含量。對5項目標組分分別建立了數(shù)學模型,發(fā)現(xiàn)無論是定標集還是驗證集,5項目標組分的定量值和定標模型預(yù)測值間的相關(guān)系數(shù)都在0.90以上,說明線性相關(guān)性較好;其次,標準分析誤差比較接近,說明分析結(jié)果的穩(wěn)定性好;另外,相對分析誤差(RPD)均大于3,說明預(yù)測的精度高。以上研究結(jié)果表明,所建立的近紅外光譜定量分析模型可較準確地測定嬰幼兒米粉中的蛋白質(zhì)、脂肪、膳食纖維、水分和灰分的含量。3、對已建立的近紅外光譜定量分析模型進行了外部樣品驗證。采用近紅外模型預(yù)測重新收集到的未參與模型建立的50個樣品,對NIR和常規(guī)分析方法開展了t檢驗,得到樣品中蛋白質(zhì)、膳食纖維、脂肪、水分、灰分含量t值分別為-1.56、1.43、1.15、-1.03、0.98,均小于臨界值t(0.05,50)=2.01,表明兩種方法不存在顯著性差異,一致性較好。4、本論文研究了近紅外光譜法檢測嬰幼兒米粉中的蛋白質(zhì)、脂肪、膳食纖維、水分和灰分成分的應(yīng)用,為近紅外光譜技術(shù)在嬰幼兒營養(yǎng)米粉品質(zhì)的無損檢測和鑒定提供可行性依據(jù),同時為后續(xù)食品和藥品等的近紅外分析研究和應(yīng)用奠定了堅實的基礎(chǔ)。
[Abstract]:Although the routine detection methods of protein, fat, dietary fiber, moisture, ash and so on are relatively mature and accurate, the pretreatment process is complicated, the reagent consumption is large, the cost is high and the time is long. Special instruments and equipment are required to restrict the efficiency of testing, production and scientific research. Compared with the conventional detection technique, NIR has the advantages of high efficiency, no pretreatment, low cost, nondestructive, green environmental protection and so on. It can be used to determine the content of multi-target components at the same time. In this paper, the quantitative analysis of the above components of infant nutritious rice flour was carried out by using near infrared spectroscopy and chemometrics. The important problems of near infrared spectroscopy in prediction modeling are discussed, including sample collection and preparation, selection of test parameters, spectrum acquisition, data processing and modeling, etc. Finally, the established model is verified. The main contents and conclusions of the study are as follows: 1. This subject collected samples of infant nutritious rice flour from 2015 to 2016 when the Food and Drug Administration carried out quality supervision and control in Jiangxi Province. The brands include Heinz, each, Yashili. Beinmei, Meilu, Ampere, etc., and took 160 batches from them. The contents of protein, fat, dietary fiber, water and ash were determined by traditional chemical techniques. It provides a basis for calibration of quantitative analysis model of near infrared spectroscopy. In this paper, the contents of protein, fat, dietary fiber, moisture and ash in 160 samples were simultaneously determined by near infrared spectroscopy. The mathematical models of the five target components are established respectively. It is found that the correlation coefficients between the quantitative values of the five target components and the predicted values of the calibration model are above 0.90, indicating that the linear correlation is good. The relative analysis error (RPD) is higher than 3, which indicates that the prediction accuracy is high. The results show that the model can accurately determine protein, fat and dietary fiber in infant rice flour. The content of water and ash. 3. The established NIR quantitative analysis model was verified by external samples. Near-infrared model was used to predict 50 recollected samples which were not involved in the establishment of the model. T test was carried out on NIR and conventional analysis methods to obtain protein, dietary fiber, fat and moisture in the sample. The ash content t values were -1.56C 1.15U -1.03U 0.98, which were less than the critical value t (0.05n 50) 2.01, which indicated that there was no significant difference between the two methods, and the consistency was good. This paper studied the determination of protein, fat and dietary fiber in infant rice flour by near infrared spectroscopy (NIR), and the results showed that there was no significant difference between the two methods in the determination of protein, fat and dietary fiber in infant rice flour. The application of moisture and ash components provides a feasible basis for the nondestructive testing and identification of the quality of infant nutritious rice flour by near infrared spectroscopy. It also lays a solid foundation for the further research and application of near-infrared analysis of food and medicine.
【學位授予單位】:東華理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TS210.7;O657.33

【參考文獻】

相關(guān)期刊論文 前10條

1 李文龍;瞿海斌;;基于近紅外光譜技術(shù)的“過程軌跡”用于中藥制藥過程監(jiān)控的研究進展[J];中國中藥雜志;2016年19期

2 馮艷春;易夏;胡昌勤;;制藥工業(yè)中近紅外光譜分析技術(shù)的重要標準和指導原則簡介[J];中國醫(yī)藥工業(yè)雜志;2016年07期

3 白雁;郝敏;雷敬衛(wèi);謝彩俠;胡小莉;張迪文;;近紅外光譜法快速測定白芍中水分及浸出物含量[J];中華中醫(yī)藥雜志;2016年04期

4 陳民;;近紅外光譜分析技術(shù)在煤質(zhì)分析中的應(yīng)用[J];科技創(chuàng)新導報;2015年34期

5 王偉;張玉;王楠;王君虹;朱作藝;李雪;;基于傅里葉變換近紅外光譜的奶粉品質(zhì)優(yōu)劣鑒別[J];浙江農(nóng)業(yè)科學;2015年11期

6 宋英華;;紅外光譜技術(shù)在環(huán)境安全領(lǐng)域中的應(yīng)用與展望[J];能源與節(jié)能;2015年08期

7 穆同娜;莊勝利;趙玉琪;吳燕濤;于曉瑾;孫婷;;近紅外光譜法快速檢測嬰兒配方奶粉中的脂肪酸含量[J];現(xiàn)代食品科技;2015年04期

8 何楚文;王立;;近紅外光譜的發(fā)展背景及在石油行業(yè)中的應(yīng)用[J];廣州化工;2015年07期

9 潘璐璐;洪淵泉;陳智鋒;趙連英;萬昌江;蘇日娜;董鎖拽;;近紅外光譜分析快速檢測技術(shù)在絲棉混紡織物成分分析中的應(yīng)用研究[J];科技通報;2015年01期

10 程文宇;管驍;劉靜;;近紅外光譜技術(shù)檢測液態(tài)奶中微量三聚氰胺的可行性研究[J];食品與機械;2015年01期

相關(guān)碩士學位論文 前2條

1 趙希雷;谷物水分測定方法比較與分析[D];河南工業(yè)大學;2015年

2 潘菁;嬰幼兒營養(yǎng)米粉配方優(yōu)化及加工關(guān)鍵技術(shù)研究[D];江南大學;2012年

,

本文編號:2079234

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/2079234.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ce731***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com