基于胺—烯反應設計合成有機硅材料及性能研究
發(fā)布時間:2018-06-16 06:24
本文選題:胺-烯反應 + 邁克爾加成反應 ; 參考:《山東大學》2017年博士論文
【摘要】:有機硅材料是至少有一個有機基團與硅原子直接相連的一類有機合成材料,是元素有機材料中發(fā)展最快的一支。有機硅材料具有耐高低溫、耐老化、耐候、電氣絕緣、生理惰性等許多獨特的性能,為其他有機材料所不能比擬和替代。有機硅材料的種類主要包括硅烷偶聯(lián)劑、硅油、硅橡膠、硅樹脂,被廣泛應于航空航天、電子電氣、建筑、交通、紡織、醫(yī)療衛(wèi)生、日用化工等領域。目前制備和功能化有機硅材料的主要方法是硅氫加成反應,該方法存在一些無法避免的缺點,如需要貴金屬催化劑的參與,增加生產(chǎn)成本;催化劑容易受到一些元素(如N、P、S)的影響,"中毒"失去催化活性;存在副反應,提純步驟繁瑣等。因此探索一種簡單、高效的方式,用于有機硅材料的制備和功能化,具有重要的實際意義。胺-烯反應(aza-Michael reaction)是一類由胺基化合物與α,β-不飽和烯烴發(fā)生的邁克爾加成反應,其原子利用率達到100%,是原子經(jīng)濟性反應。一般不需要催化劑,反應條件溫和,能夠在室溫或較為溫和條件下發(fā)生反應,反應速度適中,反應產(chǎn)率和定向選擇性高,不受其他功能基團的影響,基本無副反應發(fā)生。該反應已廣泛應用于藥物合成、天然產(chǎn)物的制備,聚合物的合成和功能化。本文主要利用胺-烯反應設計合成有機硅材料及其性能研究,探索其作為一種制備有機硅材料新途徑的可行性。1、以γ-哌嗪丙基甲基二甲氧基硅烷、3-氨丙基三乙氧基硅烷與多種α,β-不飽和烯烴化合物(丙烯酸酯、甲基丙烯酸酯、丙烯酰胺、丙烯腈、馬來酰亞胺)發(fā)生胺-烯反應,合成一系列功能化有機硅烷,包括含有單官能團的硅烷和含有兩種相同或者不同官能團的硅烷。探索了胺類化合物和共軛烯烴的反應活性,討論了反應特性,研究了濃度、溫度、烯烴的結構對單、雙加成選擇性的影響,為后續(xù)利用胺-烯反應制備功能化有機硅材料提供參考依據(jù)。2、將胺-烯反應作為一種新型硫化方式制備硅橡膠。合成了高分子量聚(哌嗪丙基甲基-二甲基)硅氧烷作為基膠,低粘度聚(丙烯酰氧基丙基甲基-二甲基)硅氧烷作為交聯(lián)劑,通過哌嗪基與丙烯酸酯基之間的胺-烯反應,使硅橡膠交聯(lián)固化。利用固體13CNMR探索交聯(lián)機理,利用無轉(zhuǎn)子硫化儀研究硫化特性,探討二段硫化溫度及時間、交聯(lián)劑用量、白炭黑用量、基膠分子量、基膠中哌嗪基的含量對硅橡膠力學性能的影響。該新型硫化方式不需要催化劑,避免了催化劑殘留對硅橡膠造成的不良影響。硫化過程中無小分子副產(chǎn)物生成,硫化溫度不高(120 ℃),方便實際加工生產(chǎn)。制備的硅橡膠具有非常優(yōu)異的力學性能(拉伸強度11.43 MPa,撕裂強度30.72 kN/m),同時保持了硅橡膠的耐高低溫性能、疏水性能。3、為了改善硅橡膠模量低的狀況,從基膠結構設計入手,合成了高分子量聚(氨丙基甲基-二甲基)硅氧烷和聚(氨乙基氨丙基甲基-二甲基)硅氧烷作為基膠,它們可以與交聯(lián)劑中的丙烯酸酯基發(fā)生二次或三次胺-烯加成反應,形成"拉簧式交聯(lián)"。利用固體13CNMR和紅外光譜研究交聯(lián)機理,探索二段硫化溫度、交聯(lián)劑用量對硅橡膠力學性能的影響。與傳統(tǒng)交聯(lián)方式相比,"拉簧式交聯(lián)"在提高交聯(lián)密度的同時不會降低Mc,因此能夠提高硅橡膠的模量,又不會降低橡膠的彈性和其他力學性能,是一種提高硅橡膠模量的有效途徑。硅橡膠的100%定伸模量由聚(哌嗪丙基甲基-二甲基)硅氧烷的1.31 MPa,提高到聚(氨丙基甲基-二甲基)硅氧烷的2.18 MPa和聚(氨乙基氨丙基甲基-二甲基)硅氧烷的 2.55 MPa。4、首次通過胺-烯反應合成堿基功能化聚硅氧烷。利用腺嘌呤和胸腺嘧啶與過量的1,4-丁二醇二丙烯酸酯反應,合成含雙鍵的腺嘌呤基和胸腺嘧啶基丙烯酸衍生物,然后與聚(哌嗪丙基甲基-二甲基)硅氧烷發(fā)生胺-烯反應,得到腺嘌呤基(A-PDMS)和胸腺嘧啶基聚硅氧烷(T-PDMS),利用核磁共振、GPC對產(chǎn)物結構進行表征。該方法避免了傳統(tǒng)的硅氫加成反應中保護、脫保護過程,是一種制備含氮聚硅氧烷的便捷途徑。堿基聚硅氧烷由原料的半流動狀態(tài)變?yōu)楣虘B(tài),力學性能測試顯示其具有彈性體的特征,利用變溫紅外分析了這種狀態(tài)的改變是由于A-A、T-T之間的氫鍵組裝作用引起的。將A-PDMS與T-PDMS混合,發(fā)現(xiàn)它們之間可以通過A-T的異組裝作用形成超分子彈性體。由于A-T的結合作用更強,得到的異組裝彈性體具有更好的力學性能,且可以通過兩種堿基的含量進行細致的調(diào)節(jié)。
[Abstract]:Organosilicon material is a kind of organic synthetic material with at least one organic group connected directly with silicon atom. It is one of the fastest developing elements in the organic material. Organosilicon material has many unique properties, such as high temperature resistance, aging resistance, weathering resistance, electrical insulation, physiological inertia and so on. It can not be compared and replaced by other organic materials. The main types of materials include silane coupling agents, silicone oil, silicone rubber and silicone resin, which are widely used in aerospace, electronic and electrical, construction, transportation, textile, medical, and daily chemical industry. The main method for preparing and functionalized organosilicon materials is the addition reaction of silicon and hydrogen. This method has some unavoidable shortcomings, such as the need to be expensive. The participation of metal catalysts increases the cost of production; the catalyst is easily affected by some elements such as N, P, S, and the "poisoning" loses its catalytic activity; there is a side reaction and the purification step is tedious. Therefore, it is of great practical significance to explore a simple and efficient way for the preparation and functionalization of the organosilicon material. The amine ene reaction (aza-Michael Reaction) is a kind of Michael addition reaction of amine based compounds with alpha, beta unsaturated alkenes. The atomic utilization ratio is 100%, and it is an atomic economic reaction. Generally, no catalyst is needed, the reaction conditions are mild, the reaction can be reacted at room temperature or more mild conditions, the reaction rate is moderate, the reaction yield and selectivity are high. The reaction has been widely used in the synthesis of drugs, the preparation of natural products, the synthesis and functionalization of the polymers. This paper mainly uses the amine ene reaction to design and synthesize the organosilicon materials and their properties, and explore the feasibility of the.1 as a new way to prepare the organosilicon materials. Piperazine propyl methyl two methoxy silane, 3- ammonia propyl triethyl silane and a variety of alpha, beta unsaturated olefins (acrylate, methacrylate, acrylamide, acrylonitrile, maleimide) react with amine enes to synthesize a series of functional organosilanes, including silanes containing mono functional groups and two kinds of the same or not. The reaction activity of amine and conjugated alkenes was explored with the functional group of silane. The reaction characteristics were discussed, and the influence of the concentration, temperature, and the structure of olefin on the selectivity of single and double addition was studied. The.2 was provided for the subsequent use of amine ene reaction to prepare functional organosilicon materials, and the amine ene reaction was used as a new vulcanization method. Silicone rubber was prepared. High molecular weight polymer (piperazine propyl methyl two methyl) siloxane was used as base glue and low viscosity poly (acroxypropyl propyl methyl two methyl) siloxane as crosslinker. The silicone rubber was cured through the reaction between piperazine and acrylate, and the mechanism of crosslinking was explored by solid 13CNMR, and no rotation was used. The vulcanization apparatus was used to study the vulcanization characteristics, and the effects of two sections of vulcanization temperature and time, the amount of crosslinking agent, the amount of white carbon black, the molecular weight of base glue and the content of piperazine in the base adhesive on the mechanical properties of silicone rubber. The new vulcanization method did not need catalyst, and the adverse effect of catalyst residue on silicone rubber was avoided. No small molecules in the vulcanization process were used. The by-products are produced and the vulcanization temperature is not high (120 degrees C). The silicone rubber has excellent mechanical properties (tensile strength of 11.43 MPa, tearing strength 30.72 kN/m), and the high and low temperature resistance of silicone rubber is maintained, and the hydrophobic property is.3. In order to improve the low modulus of silicone rubber, the structure of the rubber is designed with the base glue structure design. High molecular weight poly (An Bingji methyl two methyl) siloxane and poly (aminoethyl aminopropyl methyl two methyl) siloxane are used as base adhesives. They can react with the acrylate group in the crosslinking agent two or three times, forming a "spring crosslinking". The cross linking mechanism is studied by solid 13CNMR and infrared spectroscopy, and two sections of sulfur are explored. The influence of the temperature and the amount of crosslinker on the mechanical properties of silicone rubber. Compared with the traditional crosslinking method, the "spring crosslinking" will not reduce the Mc while increasing the crosslinking density. Therefore, it can improve the modulus of the silicone rubber, and will not reduce the elastic and other mechanical properties of the rubber. It is an effective way to improve the modulus of silicone rubber. 100 The% elongation modulus is 1.31 MPa of poly (piperazine propyl methyl - two methyl) siloxane, up to 2.18 MPa of poly (An Bingji methyl - two methyl) siloxane and 2.55 MPa.4 of poly (aminoethyl aminopropyl methyl two methyl) siloxane, for the first time the synthesis of alkaline functionalized polysiloxane through amine - alkene reaction. Butylene and thymine based acrylic acid derivatives containing double bonds were synthesized by the reaction of butanediol two acrylate, and then an amine alkene reaction with poly (piperazine propyl methyl two methyl) siloxane. The adenine group (A-PDMS) and thymine based polysiloxane (T-PDMS) were obtained. The structure of the product was characterized by nuclear magnetic resonance and GPC. It is a convenient way to prepare the nitrogen containing polysiloxane in the traditional silicon hydrogen addition reaction. It is a convenient way to prepare the nitrogen containing polysiloxane. The alkali polysiloxane changes from the semi flow state of the raw material to the solid state. The mechanical properties test shows the characteristic of the elastomer. The change of this state by the variable temperature infrared analysis is due to the hydrogen bond between A-A and T-T. The assembly is caused by the combination of A-PDMS and T-PDMS to find that they can form supramolecular elastomers through the different assembly of A-T. Because of the stronger binding of A-T, the obtained hetero - assembly elastomers have better mechanical properties and can be carefully regulated by the content of two bases.
【學位授予單位】:山東大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O634.41
【參考文獻】
相關期刊論文 前3條
1 周軍昌;任玉娟;吳奇強;王緒榮;;新型低黃變氨基硅油的制備及其應用[J];印染助劑;2009年03期
2 蔡永奎;田新祥;邢潤慶;;哌嗪基硅油的應用性能[J];有機硅材料;2008年03期
3 孫效華,王文忠,馮圣玉;氯丙基聚硅氧烷的合成進展[J];有機硅材料;2002年04期
相關博士學位論文 前2條
1 董福營;基于氨基與氯丙基反應制備新型交聯(lián)體系硅橡膠與性能研究[D];山東大學;2016年
2 刁\~;新型硅橡膠的制備與性能研究[D];山東大學;2011年
,本文編號:2025701
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2025701.html
最近更新
教材專著