天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 化學論文 >

聚乙烯吡咯烷酮—陰離子表面活性劑形成的擬聚陰離子的研究

發(fā)布時間:2018-06-06 00:04

  本文選題:擬聚陰離子 + 聚乙烯吡咯烷酮 ; 參考:《江南大學》2017年博士論文


【摘要】:聚合物與表面活性劑在溶液中能產(chǎn)生協(xié)同效應(yīng),性能優(yōu)異,從而廣泛應(yīng)用于制藥、涂料、食品、化妝品、石油開采及微納材料制備等領(lǐng)域。其中,利用聚合物-表面活性劑在溶液中形成的微納級軟模板,研究者已成功合成出各種各樣的納米材料。因此,聚合物-表面活性劑體系的物理化學性能和相互作用機理的研究在過去幾十年中一直備受關(guān)注并獲得很多成果。但關(guān)于非離子聚合物-陰離子表面活性劑的研究仍然存在幾個問題:(1)前期對該復(fù)合體系的黏度、電導(dǎo)率、光散射行為、中子散射行為等研究認為其中形成的締合物呈現(xiàn)“擬聚電解質(zhì)”的性質(zhì)或結(jié)構(gòu),但這些研究對該“擬聚電解質(zhì)”的認定主要基于復(fù)合物溶液行為或聚合物分子鏈尺寸發(fā)生變化的推測,至今仍缺乏直接的證據(jù)證實它的存在及其荷電性;(2)近幾十年來,開發(fā)各種方法著眼于研究陰離子表面活性劑與非離子聚合物發(fā)生締合相互作用存在雙臨界濃度—臨界聚集濃度(c1)和飽和聚集濃度(c2),發(fā)現(xiàn)根據(jù)臨界濃度劃分的不同濃度區(qū)間各個物種呈現(xiàn)不同的聚集狀態(tài)。然而由于該體系是一個熱力學平衡體系,鮮有有效的手段能實現(xiàn)其中不同聚集體的分離以及不同濃度階段物種平衡關(guān)系的分析,而大于c2后形成了自由膠束的結(jié)論也是主要根據(jù)溶液行為推測而得;(3)前期主要以聚乙烯吡咯烷酮(PVP)或聚乙二醇(PEG)與強電離型的表面活性劑如十二烷基硫酸鈉(SDS)的復(fù)合體系為主要研究對象,通過各種方法研究獲得了非離子聚合物與陰離子表面活性劑締合相互作用的一般規(guī)律,然而對于弱電離或多級電離型的陰離子表面活性劑與非離子聚合物相互作用的報道卻相對較少,認識淺顯,原因歸結(jié)于該類表面活性劑在溶液中的結(jié)構(gòu)相對復(fù)雜且對pH依賴性較強,而對不同類型陰離子表面活性劑與非離子聚合物締合相互作用的構(gòu)效關(guān)系研究更是缺乏。解決以上關(guān)于擬聚電解質(zhì)認定、物種平衡關(guān)系以及締合作用構(gòu)效關(guān)系等問題對于聚合物-表面活性劑體系研究具有重要的理論指導(dǎo)意義,同時對于優(yōu)化和拓展該復(fù)合體系在不同領(lǐng)域的應(yīng)用也起著重要的作用;谝陨蠁栴},本實驗主要采用毛細管電泳同時聯(lián)合黏度、表面張力和電導(dǎo)率等測定方法對PVP(PEG)-SDS、PVP(PEG)-十二烷基苯磺酸鈉(SDBS)、PVP-十二酸鈉(SD)和PVP-十二烷基磷酸酯(MLP)等體系進行了詳細的研究。主要研究內(nèi)容和結(jié)論如下:1.擬聚陰離子結(jié)構(gòu)的證明利用烏氏黏度法研究了PVP-SDS和PEG-SDS經(jīng)典體系中聚合物-SDS締合物在不同比簇集量([Г])下的溶液比濃黏度特性,結(jié)果顯示締合物溶液呈現(xiàn)低濃度下比濃黏度快速上升的“聚電解質(zhì)效應(yīng)”,這是SDS以束縛膠束的形式締合到聚合物鏈上使其荷電的結(jié)果。根據(jù)Fuoss方程擬合獲得的聚合物鏈相對擴張量隨[Г]的增大而增大,直至SDS束縛膠束在聚合物鏈上締合飽和。對于PEG-SDS體系,PEG分子鏈越長,聚電解質(zhì)效應(yīng)越顯著,無機鹽的加入將屏蔽此效應(yīng)。PVP(PEG)-SDS締合物黏度特性的研究為其屬于“擬聚電解質(zhì)”提供了初步證據(jù)。作為一種高效、快速、微量且能在水相中實現(xiàn)不同荷電密度物種的分離和分析的有效手段,毛細管電泳法利用PVP的強紫外吸收信號對PVP-SDS的研究直接證實了PVP-SDS締合物的“擬聚陰離子”結(jié)構(gòu),同時也證明了PVP-SDBS、PVP-SD和PVP-MLP等體系在特定條件下于c1和c2之間均形成了擬聚陰離子結(jié)構(gòu)的締合物;毛細管電泳同時利用表面活性劑SDBS的強紫外吸收特征分離檢測到了PEG-SDBS擬聚陰離子結(jié)構(gòu);根據(jù)有效電泳淌度(μe)的結(jié)果,擬聚陰離子的表面電荷密度隨[Г]的增大而增大。2.物種平衡關(guān)系的證明利用SDBS相對于SDS在毛細管電泳中可被紫外光譜識別的優(yōu)勢,聯(lián)合采用毛細管區(qū)帶電泳(CZE)、膠束電動毛細管色譜(MEKC)和空位親和毛細管電泳(VACE)三種毛細管電泳分離模式對SDBS、PVP-SDBS和PEG-SDBS三種體系進行對比研究,首次直接證實了大于c2以后形成了自由膠束,根據(jù)c1、c2劃分的不同SDBS濃度(cSDBS)區(qū)間,聚合物相關(guān)和表面活性劑相關(guān)的物種平衡關(guān)系為:cSDBSc1時,SDBS單體與中性聚合物共存,兩者無締合相互作用;c1cSDBSc2時,聚合物-SDBS締合物與SDBS單體以及有可能一部分未與SDBS發(fā)生締合相互作用的中性聚合物(稍大于c1時)共存;cSDBSc2時,SDBS自由膠束出現(xiàn),與聚合物-SDBS締合物、SDBS單體共存。毛細管電泳實驗獲得的SDBS濃度閾值和物種平衡關(guān)系與表面張力法和電導(dǎo)率法獲得的結(jié)果和推論吻合。3.締合作用機理與構(gòu)效關(guān)系探討通過對各個體系在外加鹽以及不同pH條件下表面張力、電導(dǎo)率和毛細管電泳的研究,反離子解離度以及締合物電泳淌度的結(jié)果表明外加鹽及降低pH均有利于非離子聚合物-陰離子表面活性劑的締合相互作用,證明陽離子在PVP與SDS、SDBS、SD、MLP等陰離子表面活性劑束縛膠束的締合相互作用中起著反離子架橋的作用,而與金屬陽離子不同的是,氫離子在弱電離的表面活性劑復(fù)合體系中同時起著氫鍵架橋作用。實驗結(jié)果同時發(fā)現(xiàn),締合相互作用對氫離子濃度的依賴性基本隨表面活性劑pKa的增大而增大。因此本文認為靜電相互作用是非離子聚合物與陰離子表面活性劑締合相互作用的主要驅(qū)動力,而疏水作用則加強了表面活性劑分子的聚集行為。有效電泳淌度的研究結(jié)果證明,各個體系形成擬聚陰離子的聚電解質(zhì)性強弱遵循以下順序:PVP-SDPVP-SDBSPVP-SDSPVP-MLP,這與擬聚陰離子的電離度(α)和比飽和簇集量([Г∞])有關(guān),實驗結(jié)果和理論分析一致證明μeμα[Г∞]。通過[Г∞]分析不同體系的締合效率,發(fā)現(xiàn)pH低于9.0時的PVP-SD體系由于較強的氫鍵架橋作用締合效率高于其他體系,而MLP由于離子頭基的位阻效應(yīng)與PVP的締合效率最低,且只有在pH7.4時PVP-MLP存在弱締合相互作用。聚合物的加入降低了表面活性劑形成膠束的濃度(從cmc降至c1),根據(jù)降低程度(cmc-c1)/cmc判斷聚合物與表面活性劑的締合效能,發(fā)現(xiàn)遵循以下順序:PVP-MLPPVP-SDSPVP-SDBSPVP-SD。以上的研究結(jié)果是不同PVP-陰離子表面活性劑體系在不同外加鹽和pH條件下氫鍵作用、反離子架橋作用、疏水作用以及表面活性劑陰離子頭基位阻效應(yīng)等因素的綜合結(jié)果,其中對締合相互作用的影響力大小順序為位阻效應(yīng)氫鍵作用反離子架橋作用。據(jù)此本文通過毛細管電泳等方法證明了不是所有的陰離子表面活性劑均能與非離子聚合物發(fā)生締合相互作用,而一旦發(fā)生締合作用則形成非離子聚合物-陰離子表面活性劑擬聚陰離子,且反離子架橋和氫鍵架橋在其中起著重要的作用。本文的研究不僅對聚合物-表面活性劑體系的研究具有重要的理論意義,而且對可控合成納米材料有一定的指導(dǎo)作用,不同類型表面活性劑與非離子聚合物締合作用的pH依賴性研究可以幫助指導(dǎo)該類體系在不同環(huán)境中的應(yīng)用。
[Abstract]:Polymers and surfactants can produce synergistic effects in solutions and have excellent properties, and are widely used in the fields of pharmaceuticals, coatings, food, cosmetics, petroleum mining and micro nano material preparation. Among them, the researchers have successfully synthesized a variety of nanoscale materials by using polymer surface active agents in the solution. Therefore, the research on the physical and chemical properties and interaction mechanism of the polymer surfactant system has attracted much attention and gained a lot of achievements in the past several decades. However, there are still several problems in the study of nonionic polymer anionic surfactants: (1) the viscosity, conductivity and light scattering of the composite system in the previous period For the study of neutron scattering behavior, it is believed that the formation of the association is characterized by the nature or structure of the "polyelectrolyte", but the determination of the "polyelectrolyte" is mainly based on the conjecture of the behavior of the complex solution or the change of the size of the polymer chain, and still lacks direct evidence to confirm its existence and its charge. (2) (2) in recent decades, various methods have been developed to study the interaction of anionic surfactants and nonionic polymers with two critical concentrations, critical concentration (C1) and saturated concentration (C2). Since the system is a thermodynamic equilibrium system, there are few effective methods to analyze the separation of different aggregates and the analysis of species equilibrium in different concentration stages, and the conclusion that the free micelle is formed after more than C2 is mainly based on the solution behavior; (3) polyvinylpyrrolidone (PVP) or poly B is mainly used in the early stage. The main research object is diol (PEG) and the composite system of strong electric dissociated surface active agent, such as twelve alkyl sodium sulfate (SDS). Through various methods, the general law of the interaction of nonionic polymers and anionic surfactants is obtained by various methods. However, the anionic surfactants of weak or multilevel ionization and non ionization are not isolated. There are relatively few reports on the interaction of subpolymers. The reason is simple, because the structure of the surfactants in the solution is relatively complex and has a strong dependence on the pH, but the research on the relationship between different types of anionic surfactants and non ionic polymers is more lacking. The problem of solution quality identification, species balance and association effect relationship are of great theoretical significance for the study of polymer surfactant system, and it also plays an important role in optimizing and expanding the application of the composite system in different fields. PVP (PEG) -SDS, PVP (PEG) - twelve alkyl benzene sulfonate (SDBS), PVP- twelve sodium acid sodium (SD) and PVP- twelve alkyl phosphate (MLP) have been studied in detail by combined viscosity, surface tension and conductivity. The main contents and conclusions are as follows: 1. the proof of the structure of pseudo polyanions is studied by urse viscosity method. The solution of polymer -SDS Association in the PEG-SDS classical system is more viscous than the concentrated viscosity. The results show that the association solution presents a "polyelectrolyte effect" that increases rapidly at a lower concentration than the concentration viscosity. This is the result of the association of SDS in the form of binding micelles to the polymer chain. According to the Fuoss equation. The relative extensor amount of the polymer chain obtained by fitting increases with the increase of the ratio, until the SDS binding micelle is saturated in the polymer chain. For the PEG-SDS system, the longer the PEG molecular chain is, the more significant the polyelectrolyte effect is. The addition of inorganic salts will shield this effect of the viscosity properties of the.PVP (PEG) -SDS Association as a "polyelectrolyte" Preliminary evidence is provided. As an efficient, rapid, micro and effective means for the separation and analysis of species with different charge density in the water phase, capillary electrophoresis has directly confirmed the "polyanionic" structure of the PVP-SDS association by using the strong ultraviolet absorption signal of PVP to PVP-SDS, and also proved PVP-SDBS, PVP- SD and PVP-MLP formed an association of polyanionic structures between C1 and C2 under specific conditions; capillary electrophoresis also detected the structure of PEG-SDBS polyanions by the strong UV absorption characteristics of the surfactant SDBS, and the surface charge density of the polyanions according to the results of the effective electrophoretic mobility (mu E). It is proved that the increase of.2. species balance relationship by SDBS is superior to SDS in capillary electrophoresis, combined with capillary zone electrophoresis (CZE), micellar electrokinetic capillary chromatography (MEKC) and vacancy affinity capillary electrophoresis (VACE) three capillary electrophoresis separation modes for SDBS, PVP-SDBS and PEG-SDBS three A comparative study of the species system has been made for the first time that the free micelle formed after more than C2, according to the different SDBS concentration (cSDBS) interval of C1, C2, and the equilibrium relationship between the polymer related and the surfactant related species is: when cSDBSc1, the SDBS monomer and the neutral polymer coexist and both have no association interaction; when c1cSDBSc2, polymer -SDB S associates with SDBS monomers and some possible neutral polymers (slightly larger than C1) that have not associated with SDBS interaction; cSDBSc2, SDBS free micelles appear, coexist with polymer -SDBS Association, SDBS monomer. The SDBS concentration threshold value and species equilibrium relationship with the surface tension method and electrical conductivity obtained by capillary electrophoresis experiment The results and inferences obtained by the method are consistent with the relationship between the.3. association mechanism and the structure-activity relationship. The results of the surface tension, conductivity and capillary electrophoresis of the various systems under the addition of salt and different pH conditions, the dissolution of the ion and the electrophoretic mobility of the associates show that the addition of salt and the reduction of pH are beneficial to the nonionic polymer - ionization. The association interaction of subsurface active agents shows that cations play an anti ion bridge role in the association interaction of binding micelles of anionic surfactants, such as PVP, SDS, SDBS, SD and MLP. Unlike metal cations, hydrogen ions play the role of hydrogen bonding at the same time in the weakly ionized surfactant composite system. It is also found that the dependence of the association interaction on the concentration of hydrogen ions increases with the increase of the surfactant pKa. Therefore, the electrostatic interaction is the main driving force of the interaction of the nonionic polymers and the anionic surfactants, and the hydrophobic interaction strengthens the aggregation behavior of the surfactant molecules. The results of the effective electrophoretic mobility show that the polyelectrolyte strength of the polyanions in each system follows the following order: PVP-SDPVP-SDBSPVP-SDSPVP-MLP, which is related to the degree of ionization (alpha) and the specific saturation cluster of polyanions. The association efficiency of the system was found to be less than 9 when the PVP-SD system was higher than the other systems because of the strong hydrogen bond bridging effect, while MLP was the lowest associated with PVP because of the steric hindrance effect of the ionic head base, and the PVP-MLP had a weak association interaction only at pH7.4. The addition of polymeric substances reduced the formation of the micelles of the surfactant. The concentration (from CMC to C1), according to the degree of reduction (cmc-c1) /cmc to determine the association efficiency of polymer and surfactant, follows the following order: the results above PVP-MLPPVP-SDSPVP-SDBSPVP-SD. are the hydrogen bond action of different PVP- anionic surfactant systems under the different addition of salt and pH conditions, the anti ion bridge effect, the hydrophobicity. The comprehensive results of factors such as the steric effect of the anionic head base of the surfactant and other factors, in which the influence of the association interaction is the effect of the hydrogen bond on the bridge effect of the hydrogen bond, and it is proved that not all the anionic surfactants can occur with the nonionic polymers by capillary electrophoresis. Association interaction is associated with the formation of non ionic polymer anionic surfactants as a polyanion once the association is associated, and the anti ion bridge and hydrogen bonding bridge play an important role in it. This study not only has a significant theoretical significance for the study of polymer surface active agent system, but also has a great significance in the study of controlled synthetic nanoscale. The material has a certain guiding role. The pH dependence study of the association of different types of surfactants with non ionic polymers can help guide the application of this kind of system in different environments.
【學位授予單位】:江南大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O647.2

【參考文獻】

相關(guān)期刊論文 前10條

1 馮茹森;姜雪;郭擁軍;寇將;蒲迪;周洋;陳俊華;;NaCl對疏水締合聚合物/十二烷基苯磺酸鈉復(fù)合體系流變性能的影響[J];高分子通報;2015年08期

2 LOH Watson;BRINATTI Cesar;;Calorimetry is not color-blind. Molecular insights on association processes in surfactant-polymer mixtures derived from calorimetric experiments[J];Science China(Chemistry);2011年12期

3 陳曉明;楊海洋;何平笙;;水溶液中聚乙烯基吡咯烷酮與十二烷基硫酸鈉的相互作用機理[J];高分子材料科學與工程;2011年01期

4 趙劍曦;;表面活性劑水溶液的電導(dǎo)率研究方法和一些特征數(shù)據(jù)的提取[J];物理化學學報;2010年10期

5 阮小云;方云;樊曄;;SDS-PVP水溶液中超細鎳粉的制備[J];物理化學學報;2008年08期

6 方云;劉雪鋒;夏詠梅;宗李燕;;十二烷基硫酸鈉-水溶性非離子大分子間團簇化作用部位的~1H和~(13)C及2D NMR表征[J];高等學校化學學報;2006年04期

7 徐桂英,欒玉霞,劉靜,于麗;穩(wěn)態(tài)熒光法研究表面活性劑/大分子相互作用[J];物理化學學報;2005年05期

8 徐桂英,欒玉霞,劉軍;雙烴鏈表面活性劑的聚集行為及其應(yīng)用[J];物理化學學報;2005年04期

9 方云,蔡琨,宗李燕,劉雪鋒,何沫沙;水溶性非離子大分子與烷基硫酸鈉同系物團簇化的比飽和簇集量[J];高等學;瘜W學報;2004年05期

10 夏詠梅,方云,劉雪鋒,蔡琨;陰離子表面活性劑與非離子水溶性大分子二元體系的臨界類膠束聚集數(shù)[J];高等學校化學學報;2002年10期

相關(guān)博士學位論文 前1條

1 方云;均聚物/表面活性劑或無規(guī)共聚物的水相自組裝及微反應(yīng)器應(yīng)用[D];復(fù)旦大學;2011年

,

本文編號:1984026

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/1984026.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6bbd1***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com