珠子參化學(xué)成分及生物活性研究
本文選題:珠子參 + 化學(xué)成分; 參考:《吉林大學(xué)》2017年博士論文
【摘要】:珠子參(Panacis majoris Rhizoma)為五加科(Araliaceae)人參屬(Panax)植物珠子參(Panax japonicus C.A.Mey.var.major(Burk.)C.Y.Wu et K.M.Feng)或羽葉三七(Panax japonicus C.A.Mey.var.bipinnatifidus(Seem.)C.Y Wu et K.M.Feng)的干燥根莖,具有抗腫瘤、抗血栓、提高免疫力等藥理作用。珠子參的化學(xué)成分主要為三萜皂苷,但與人參、西洋參、三七等同屬植物相比,珠子參的研究報(bào)道較少,其化學(xué)成分及藥理作用的研究尚存在許多空白。為完善珠子參的質(zhì)量標(biāo)準(zhǔn),研究其藥效物質(zhì)基礎(chǔ),進(jìn)而開(kāi)發(fā)其新的醫(yī)藥用途,本文對(duì)珠子參的化學(xué)成分與生物活性進(jìn)行了研究。本文首先使用硅膠柱層析、ODS柱層析、制備色譜等分離方法并結(jié)合MS、1D、2D NMR等波譜學(xué)手段從珠子參乙醇提取物中分離并鑒定了42個(gè)單體化合物,其中包括6個(gè)新化合物和16個(gè)首次從珠子參中分離出的化合物。新化合物分別為(20S,24S,25R*)-6-O-[β-D-吡喃葡萄糖基-(1→2)-β-D-吡喃葡萄糖基]-達(dá)瑪-20,24-環(huán)氧-3β,6α,12β,25,26-五醇(1)、(20S,24R,25R)-6-O-[β-D-吡喃葡萄糖基-(1→2)-β-D-吡喃葡萄糖基]-達(dá)瑪-20,24-環(huán)氧-3β,6α,12β,25,26-五醇(2)、(20S)-6-O-[β-D-吡喃葡萄糖基-(1→2)-β-D-吡喃葡萄糖基]-達(dá)瑪-20,25-環(huán)氧-3β,6α,12β,24α-四醇(3)、6-O-[β-D-吡喃葡萄糖基-(1→2)-β-D-吡喃葡萄糖基]-達(dá)瑪-3β,6α,12β,20S,24R,25-六醇(4)、6-O-[β-D-吡喃葡萄糖基-(1→2)-β-D-吡喃葡萄糖基]-達(dá)瑪-25(26)-烯-3β,6α,12β,20S,24R-五醇(5)和3-O-[β-D-吡喃葡萄糖基-(1→2)-β-D-(6′-O-乙基)-吡喃葡萄糖醛基]-齊墩果酸-28-O-β-D-吡喃葡萄糖苷(6)。首次分離出的化合物分別為齊墩果酸-3-O-α-L-呋喃阿拉伯糖基-(1→4)-β-D-吡喃葡萄糖醛酸苷(12)、3-O-{β-D-吡喃葡萄糖基-(1→2)-[α-L-呋喃阿拉伯糖基-(1→4)]-β-D-吡喃葡萄糖醛基}-齊墩果酸-28-O-β-D-吡喃葡萄糖苷(18)、6″-O-乙酰基人參皂苷Rb1(20)、越南皂苷R4(21)、6″′-O-乙;藚⒃碥誖e(27)、擬人參皂苷RT2(32)、擬人參皂苷F11(33)、越南皂苷R8(34)、三七皂苷E(35)、越南皂苷R9(36)、越南皂苷R13(37)、ginsenoside I(38)、人參皂苷Re5(39)、ginsenjilinol(40)、西洋參皂苷L11(41)、yesanchinoside R2(42)。所分離出的化合物分別為竹節(jié)參皂苷V(7)、人參皂苷Ro甲酯(8)、齊墩果酸-3-O-β-D-吡喃葡萄糖基-(1→2)-β-D-吡喃葡萄糖醛酸苷(9)、竹節(jié)參皂苷IV(10)、araloside A methyl ester(11)、pseudoginsenoside RT1(13)、pseudoginsenoside RT1 methyl ester(14)、竹節(jié)參皂苷IVa(15)、竹節(jié)參皂苷IVa甲酯(16)、齊墩果酸-28-O-β-D-吡喃葡萄糖苷(17)、人參皂苷Rb1(19)、人參皂苷Rf(22)、20-葡萄糖人參皂苷Rf(23)、三七皂苷R2(24)、三七皂苷R1(25)、人參皂苷Re(26)、人參皂苷Rd(28)、珠子參苷R1(29)、24(R)-珠子參苷R1(30)和珠子參苷R2(31)。上述分離出的皂苷類(lèi)成分按苷元結(jié)構(gòu)不同,分為齊墩果烷型皂苷、達(dá)瑪烷型皂苷和奧克梯隆型皂苷。為明確上述不同類(lèi)型的皂苷類(lèi)成分在珠子參中的含量,本文分別建立了三種利用新的前處理手段的HPLC檢測(cè)方法。(1)首次使用離子液體雙水相結(jié)合HPLC法對(duì)珠子參中5種齊墩果烷型皂苷進(jìn)行了提取與含量測(cè)定。通過(guò)實(shí)驗(yàn)條件的優(yōu)化,最終建立了0.2 g珠子參樣品,3.0 m L去離子水,0.5m L[Hmim]Br離子液體,2.5 g K2HPO4的樣品前處理方法。該方法的檢出限在0.31~0.88μg·m L-1之間,穩(wěn)定性實(shí)驗(yàn)的RSD值在0.26%~2.69%之間,回收率在90.00%~106.00%之間,顯示該方法靈敏度高、穩(wěn)定性和回收率良好,適用于測(cè)定珠子參中齊墩果烷型皂苷的含量。在此條件下,測(cè)得5種齊墩果烷型皂苷的含量分別為47.10 mg·g~(-1)、24.00 mg·g~(-1)、0.35 mg·g~(-1)、0.17 mg·g~(-1)和0.44 mg·g~(-1);(2)首次使用離子液體提取-SPE富集結(jié)合HPLC法對(duì)珠子參中5種達(dá)瑪烷型皂苷進(jìn)行了提取與含量測(cè)定。通過(guò)實(shí)驗(yàn)條件的優(yōu)化,最終建立了50.0 mg珠子參樣品,0.8 m L去離子水,0.2 m L[Bmim]Br離子液體,3.0 m L 60%丙酮-水溶液洗脫的樣品前處理方法。該方法的檢出限在0.43~0.90μg·m L-1之間,穩(wěn)定性實(shí)驗(yàn)的RSD值在0.63%~1.73%之間,回收率在92.00%~106.40%之間,顯示該方法靈敏度高、穩(wěn)定性和回收率良好,適用于測(cè)定珠子參中達(dá)瑪烷型皂苷的含量。在此條件下,測(cè)得5種達(dá)瑪烷型皂苷的含量分別為92.0μg·g~(-1)、106.0μg·g~(-1)、100.0μg·g~(-1)、33.0μg·g~(-1)和470.0μg·g~(-1);(3)首次使用基質(zhì)固相分散提取結(jié)合HPLC-ELSD法對(duì)珠子參中5種奧克梯隆型皂苷進(jìn)行了提取與含量測(cè)定。通過(guò)實(shí)驗(yàn)條件的優(yōu)化,最終建立了以硅藻土為分散劑,甲醇為洗脫劑的樣品前處理方法。該方法穩(wěn)定性實(shí)驗(yàn)的RSD值在0.57%~1.96%之間,回收率在85.71%~103.00%之間,顯示該方法靈敏度高、穩(wěn)定性和回收率良好,適用于測(cè)定珠子參中奧克梯隆型皂苷的含量。在此條件下測(cè)得5種奧克梯隆型皂苷的含量分別為916.0μg·g~(-1)、35.7μg·g~(-1)、720.0μg·g~(-1)、19.2μg·g~(-1)和12.9μg·g~(-1)。上述三種類(lèi)型的皂苷中,含量最高的是齊墩果烷型5種皂苷,在珠子參中總含量達(dá)到7.02%,遠(yuǎn)高于其他兩種類(lèi)型。與傳統(tǒng)方法相比,上述三種樣品前處理方法均具有便捷、快速、環(huán)保等優(yōu)點(diǎn),適于珠子參中有效成分的快速提取與準(zhǔn)確分析。據(jù)文獻(xiàn)報(bào)道,齊墩果烷型皂苷當(dāng)C3位連糖C28位不連糖時(shí)其活性最強(qiáng),據(jù)此,我們推測(cè)將C3,C28-雙糖鏈齊墩果烷型皂苷降解成C3-單糖鏈皂苷后其藥理活性有可能增強(qiáng)。為此本文對(duì)珠子參總皂苷進(jìn)行了降解并對(duì)降解產(chǎn)物的化學(xué)成分進(jìn)行了分離與結(jié)構(gòu)鑒定,同時(shí)對(duì)降解前后的總皂苷的生物活性進(jìn)行了對(duì)比研究。首先利用大孔吸附樹(shù)脂法制備珠子參總皂苷(PJTS),經(jīng)HPLC分析可知,PJTS中的主要成分為5種C3,C28-雙糖鏈齊墩果烷型皂苷,它們分別為竹節(jié)參皂苷IVa(I)、竹節(jié)參皂苷IV(II)、pseudoginsenoside RT1(III)、竹節(jié)參皂苷V(IV)和3-O-{β-D-吡喃葡萄糖基-(1→2)-[α-L-呋喃阿拉伯糖基-(1→4)]-β-D-吡喃葡萄糖醛基}-齊墩果酸-28-O-β-D-吡喃葡萄糖苷(V),它們?cè)赑JTS中含量分別為168.1mg·g~(-1)、115.7 mg·g~(-1)、65.4 mg·g~(-1)、270.9 mg·g~(-1)和79.3 mg·g~(-1),總含量達(dá)到69.94%。接著采用堿降解的方法對(duì)上述珠子參總皂苷進(jìn)行了降解,獲得了珠子參總皂苷降解產(chǎn)物(DPJTS);瘜W(xué)成分研究結(jié)果表明,上述5種C3,C28-雙糖鏈齊墩果烷型皂苷(化合物I~V)完全降解為C3-單糖鏈齊墩果烷型皂苷,它們分別為齊墩果酸-3-O-β-D-吡喃葡萄糖醛酸苷(P-1)、齊墩果酸-3-O-α-L-呋喃阿拉伯糖基-(1→4)-β-D-吡喃葡萄糖醛酸苷(P-2)、齊墩果酸-3-O-β-D-吡喃木糖基-(1→2)-β-D-吡喃葡萄糖醛酸苷(P-3)、齊墩果酸-3-O-β-D-吡喃葡萄糖基-(1→2)-β-D-吡喃葡萄糖醛酸苷(P-4)和齊墩果酸-3-O-β-D-吡喃葡萄糖基-(1→2)-[α-L-呋喃阿拉伯糖基-(1→4)]-β-D-吡喃葡萄糖醛酸苷(P-5),它們?cè)贒PJTS中的含量分別為128.1mg·g~(-1)、99.7 mg·g~(-1)、39.2 mg·g~(-1)、302.6 mg·g~(-1)和63.7 mg·g~(-1),總含量達(dá)到63.33%。接著利用大鼠心肌缺血再灌注損傷模型,對(duì)比考察了PJTS及DPJTS對(duì)大鼠心肌缺血再灌注損傷(MIRI)的保護(hù)作用,并初步探討了其作用機(jī)制。實(shí)驗(yàn)結(jié)果顯示,PJTS及DPJTS對(duì)大鼠實(shí)驗(yàn)性心肌缺血再灌注損傷均具有保護(hù)作用,其機(jī)制可能與抑制血小板黏附、聚集,抑制血液高黏滯狀態(tài)及增強(qiáng)機(jī)體的抗氧化能力有關(guān)。DPJTS的上述作用略?xún)?yōu)于PJTS,但兩者之間無(wú)明顯差異,沒(méi)有觀察到文獻(xiàn)所述的單糖鏈皂苷活性顯著大于雙糖鏈皂苷的現(xiàn)象,具體原因有待深入研究。另?yè)?jù)文獻(xiàn)報(bào)道,珠子參總皂苷具有抗血栓類(lèi)疾病的作用,另外本文的研究結(jié)果也證明珠子參總皂苷具有抑制血小板黏附、聚集的作用。為探明珠子參中皂苷類(lèi)單體成分與其抗血栓作用的關(guān)系,本實(shí)驗(yàn)利用體外抗血小板凝集實(shí)驗(yàn)?zāi)P?研究了珠子參中17種皂苷類(lèi)單體成分對(duì)由二磷酸腺苷(ADP)和花生四烯酸(AA)作為誘導(dǎo)劑引起的血小板聚集的抑制作用,探討了其構(gòu)效關(guān)系。結(jié)果表明,上述皂苷對(duì)由二磷酸腺苷(ADP)和花生四烯酸(AA)引起的血小板聚集均有一定的抑制作用,在糖基數(shù)目相等的情況下,抑制活性隨著羥基個(gè)數(shù)的增加而增強(qiáng)。綜上所述,本文對(duì)珠子參的化學(xué)成分與生物活性進(jìn)行了較為深入的研究,在化學(xué)成分的分離鑒定、含量測(cè)定、總皂苷降解產(chǎn)物的制備及生物活性研究等方面取得了創(chuàng)新性研究成果,為珠子參的開(kāi)發(fā)利用提供了新的科學(xué)依據(jù)。
[Abstract]:Panacis majoris Rhizoma is the dry rhizome of the Panax plant (Panax japonicus C.A.Mey.var.major (Burk.) C.Y.Wu et K.M.Feng) or the pinnate leaf 37. It has antitumor, antithrombotic and immunity enhancement. The chemical composition of the ginseng is mainly three terpenoid saponins. But compared with ginseng, Panax quinquefolium and 37, there are few reports on the study of Pearl ginseng, and there are still many gaps in the study of its chemical composition and pharmacological action. The chemical composition and biological activity of the ginseng were studied. In this paper, 42 monomers were isolated and identified by silica gel column chromatography, ODS column chromatography, preparative chromatography and MS, 1D, 2D NMR and other spectroscopic methods, including 6 new compounds and 16 first from Pearl ginseng. The compounds are separated. The new compounds are (20S, 24S, 25R*) -6-O-[beta -D- Piran glucosamine - (1 - 2) - beta -D- piranosamine] - DMA -20,24- epoxy -3 beta, 6 alpha, 12 beta, 25,26- five alcohol (1), (20S, 24R, 25R) - beta glucosamine - (1 - 2) - beta glucosamine] - DMA beta epoxide beta, 6 A, 12 beta, five alcohol (2) -6-O-[beta -D- glucosyl group - (1 - 2) - beta -D- piranolyl] - DMA -20,25- epoxy -3 beta, 6 alpha, 12 beta, 24 - four alcohol (3), 6-O-[beta -D- glucosyl - (1 - 2) - beta -D- Piran glucosyl] - DMA -3 beta, 6, 12 beta, 20S, 24R, 25- six alcohol (4), beta glucosyl - glucosyl - beta glucosyl - beta glucosyl Alpha, 12 beta, 20S, 24R- five alcohol (5) and 3-O-[beta -D- glucolyl - (1 - 2) - beta -D- (6 '-O- ethyl) - glycosylaldehyde] - oleanolic acid -28-O- beta -D- piranoside (6). The first isolated compounds are oleanolic acid -3-O- alpha -L- furan - (1 - 4) - beta -D- glucuronidoside (12), 3-O-{beta glucan grape Glycosyl - (1 - 2) - [alpha -L- furan - Arabia sugar - (1 - 4)] - beta -D- piranolyl glucoside -28-O- beta -D- glucoside (18), 6 "-O- acetyl ginsenoside Rb1 (20), Vietnamese saponin R4 (21), 6 '-O- acetyl ginsenoside Re (27), pseudo ginseng saponins RT2 (32), saponins F11 (33), Viet Nam saponins R8 (34), 37 saponins 5) saponins R9 (36), Vietnamese saponin R13 (37), ginsenoside I (38), ginsenoside Re5 (39), ginsenjilinol (40), Panax ginseng L11 (41), yesanchinoside R2 (42). The separated compounds are V (7), ginseng soap glucoside Ro methyl ester (8), and oleanolic acid -3-O- beta glucoside (1 to 2) - beta glucuronide glucuronidoside. 9) Panax japonicus saponins IV (10), Araloside A methyl ester (11), pseudoginsenoside RT1 (13), pseudoginsenoside RT1 methyl ester (14), Panax japonicus saponins IVa (15), Rhizoma japonicus saponins (16), oleanolic acid, beta glucoside (17), ginsenoside 19, 22, 23, 37 saponins R2 (24), 37 saponins (25), ginsenoside Re (26), ginsenoside Rd (28), ginseng glucoside R1 (29), 24 (R) - Pearl glycoside R1 (30) and Pearl glycoside R2 (31). The above separated saponins are divided into oleanane saponins, damanane saponins and orktrolon saponins according to the structure of the glycosides. In this paper, three kinds of HPLC detection methods were established in this paper. (1) the extraction and content determination of 5 oleanane saponins from pearls with ionic liquid biaqueous phase combined with HPLC method was first used. By optimizing the experimental conditions, the 0.2 g Pearson samples were established, and 3 m L was removed. Sub water, 0.5m L[Hmim]Br ionic liquid, 2.5 g K2HPO4 sample pretreatment method. The detection limit of this method is between 0.31~0.88, G, m L-1. The RSD value of the stability test is between 0.26%~2.69%, and the recovery rate is between 90.00%~106.00%. It shows that the method is sensitive, stable and recovery is good. It is suitable for the determination of oleanane type in Pearl ginseng. Under this condition, the content of 5 kinds of oleanane saponins were 47.10 mg. G~ (-1), 24 mg. G~ (-1), 0.35 mg. G~ (-1), 0.17 mg. G~ (-1) and 0.44 respectively. (2) the extraction and determination of 5 damanane saponins in Pearl were first used. The test conditions are optimized. Finally, the samples of 50 mg Pearson ginseng, 0.8 m L deionized water, 0.2 m L[Bmim]Br ionic liquid, 3 m L 60% acetone water solution elution sample pretreatment method. The detection limit of this method is between 0.43~0.90 mu g m L-1, the RSD value of the stability experiment is 0.63% This method has high sensitivity, stability and recovery. It is suitable for the determination of the content of damanine saponins in Panax japonicus. Under this condition, the content of 5 kinds of damanine saponins is 92 G. G~ (-1), 106 mu g. G~ (-1), 100 mu g. G~ (-1), 33 mu g. G~ (-1) and 470 mu. The LC-ELSD method was used to extract and determine the content of 5 kinds of ootrolon saponins in the ginseng. Through the optimization of the experimental conditions, a sample pretreatment method was established with diatomite as a dispersant and methanol as a eluant. The RSD value of the stability test was between 0.57%~1.96% and 85.71%~103.00%, showing the spirit of the method. High sensitivity, good stability and recovery, it is suitable for the determination of the content of ootrolone saponins in Panax japonicus. Under this condition, the content of 5 kinds of oktrolone saponins is 916 G. G~ (-1), 35.7 mu g. G~ (-1), 720 mu g. G~ (-1), 19.2 mu g. G~ (-1) and 12.9 mu. The total content of 5 kinds of saponins in the Panax japonicus is 7.02%, far higher than the other two types. Compared with the traditional methods, the above three sample pretreatment methods are convenient, fast, and environmentally friendly. It is suitable for the rapid extraction and accurate analysis of the effective components in the Pearl ginseng. According to the literature, the oleanane saponins are C28 bit in C3 position sugar. The activity of C3, C28- double sugar chain oleanane saponins from C3- monosaccharide chain saponins could be enhanced. The degradation of total saponins from pearls and the identification of the chemical constituents of the degradation products were carried out in this paper, and the total saponins before and after degradation were also studied. First, the total saponins (PJTS) were prepared by macroporous adsorption resin. By HPLC analysis, the main components of PJTS were 5 kinds of C3, C28- double sugar chain oleanane saponins, they were I, IV (II), pseudoginsenoside RT1 (III), bamboo ginseng saponins and beta The glucosamine - (1 - 2) - [alpha -L- furan - Arabia sugar - (1 - 4)] - beta -D- piranolyl - glucuronic acid -28-O- beta -D- glucoside (V) in PJTS are 168.1mg. G~ (-1), 115.7 mg. G~ (-1), 65.4, 270.9, and 79.3. Methods the total saponins from the above pearl were degraded and the total saponins degradation product (DPJTS) was obtained. The results of chemical composition study showed that the above 5 kinds of C3, C28- chain oleanin saponins (compound I~V) were completely degraded to C3- monosaccharide chain oleanin saponins, which were oleanolic acid -3-O- beta -D- glucuronide glycoside respectively. P-1), oleanolic acid -3-O- alpha -L- furan - Arabia glycosyl - (1 - 4) - beta -D- glucuronidoside (P-2), oleanolic acid -3-O- beta -D- piranolyl - (1 - 2) - beta -D- piranoside (P-3), oleanolic acid -3-O- beta -D- Piran glucuronidyl - (1 - 2) - beta -D- Piran glucuronidoside and oleanolic acid - (1 - 2) - [alpha -L- furan - (1 - 4)] - beta -D- glucuronidoside (P-5), their contents in DPJTS were 128.1mg / g~ (-1), 99.7 mg. G~ (-1), 39.2 mg g~, 302.6 and 63.7. The protective effect of S on myocardial ischemia reperfusion injury (MIRI) in rats and its mechanism are preliminarily discussed. The experimental results show that PJTS and DPJTS have protective effects on experimental myocardial ischemia reperfusion injury in rats. The mechanism may be related to the inhibition of platelet adhesion, aggregation, inhibition of high viscosity of blood and the enhancement of the antioxidant capacity of the body. The above effect of.DPJTS is slightly better than that of PJTS, but there is no obvious difference between the two. There is no observation that the monosaccharide saponins in the monosaccharide chain are significantly greater than the double sugar chain saponins. The total saponins of Panax japonicus have the effect of inhibiting platelet adhesion and aggregation. In order to explore the relationship between saponins and the antithrombotic effect of saponins in the Panax japonicus, this experiment uses an in vitro antiplatelet aggregation experiment model to study 17 kinds of saponins in the ginseng, which are used as inducers of adenosine two phosphate (ADP) and peanut four enoic acid (AA). The inhibitory effect of platelet aggregation was discussed, and its structure-activity relationship was discussed. The results showed that the above saponins could inhibit the platelet aggregation caused by adenosine two (ADP) and arachidic acid (AA). In the case of the equal number of glycosyl groups, the inhibitory activity was enhanced with the increase of the number of hydroxyl groups. The chemical composition and biological activity of the sub ginseng have been deeply studied. The innovative research results have been obtained in the separation and identification of the chemical components, the determination of the content, the preparation of the total saponins degradation products and the study of biological activity, which provides a new scientific basis for the development and utilization of the Pearl ginseng.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O652;R284.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前3條
1 崔九成;張旋;楊新杰;王薇;李淵源;宋蓓;宋小妹;;不同產(chǎn)地珠子參中微量元素含量分析[J];光譜實(shí)驗(yàn)室;2011年06期
2 時(shí)曉磊;王加付;姚華;張培旭;李緒文;張海玉;金永日;;珠子參化學(xué)成分分析[J];高等學(xué);瘜W(xué)學(xué)報(bào);2013年02期
3 許苗苗;宋蓓;楊新杰;王薇;崔九成;黃榮華;宋小妹;;高效液相色譜法同時(shí)測(cè)定珠子參中4種化學(xué)成分的含量[J];中南藥學(xué);2014年08期
相關(guān)會(huì)議論文 前4條
1 陳濤;陳茂華;;珠子參多糖提取及抗肝癌效應(yīng)的實(shí)驗(yàn)研究[A];藥用植物化學(xué)與中藥資源可持續(xù)發(fā)展學(xué)術(shù)研討會(huì)論文集(上)[C];2009年
2 宋小妹;蔡寶昌;;珠子參化學(xué)成分和藥理活性研究進(jìn)展[A];中華中醫(yī)藥學(xué)會(huì)中藥炮制分會(huì)2008年學(xué)術(shù)研討會(huì)論文集[C];2008年
3 石孟瓊;賀海波;盧訓(xùn)叢;;珠子參醇提物對(duì)小鼠局灶性腦缺血損傷的保護(hù)作用[A];第四屆全國(guó)臨床中藥學(xué)學(xué)術(shù)研討會(huì)論文摘要集[C];2011年
4 宋小妹;李淵源;宋蓓;房方;;珠子參不同藥用部位微量元素分析[A];中華中醫(yī)藥學(xué)會(huì)第十屆中藥鑒定學(xué)術(shù)會(huì)議暨WHO中藥材鑒定方法和技術(shù)研討會(huì)論文集[C];2010年
相關(guān)重要報(bào)紙文章 前3條
1 張必達(dá);云南珠子參貨疏價(jià)堅(jiān)[N];中藥報(bào);2000年
2 玉龍縣農(nóng)業(yè)局創(chuàng)新辦 和元偉;珠子參的人工栽培[N];云南科技報(bào);2013年
3 云南中醫(yī)學(xué)院主任醫(yī)師 楊健武;云南名藥珠子參[N];云南日?qǐng)?bào);2001年
相關(guān)博士學(xué)位論文 前3條
1 張紅;珠子參促進(jìn)造血活性及其多糖分析研究[D];西北大學(xué);2015年
2 李敏;珠子參化學(xué)成分及生物活性研究[D];吉林大學(xué);2017年
3 張延妮;珠子參化學(xué)成分及其活性成分的篩選研究[D];陜西師范大學(xué);2010年
相關(guān)碩士學(xué)位論文 前4條
1 楊濤;人參屬藥用植物珠子參多糖成分研究[D];武漢輕工大學(xué);2016年
2 王加付;珠子參化學(xué)成分的研究[D];吉林大學(xué);2012年
3 劉超;秦巴山區(qū)人參屬中藥珠子參道地性及主導(dǎo)因子研究[D];陜西中醫(yī)學(xué)院;2013年
4 任冰;人參屬藥材竹節(jié)參和珠子參化學(xué)成分指紋圖譜研究[D];武漢輕工大學(xué);2015年
,本文編號(hào):1916377
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1916377.html