炭材料復(fù)合金屬有機(jī)框架化合物(MOFs)常溫脫硫性能研究
本文選題:MOFs + 改性; 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:天然氣中含有一定量硫化物,不僅對(duì)其工藝使用中的催化劑造成毒害,一旦燃燒排放入大氣,還會(huì)對(duì)環(huán)境造成嚴(yán)重污染。因此,必須將硫化物脫除。其中,吸附脫硫因其具有操作簡便、工藝條件溫和等優(yōu)點(diǎn)成為一項(xiàng)非常有競(jìng)爭力的脫硫技術(shù)。金屬有機(jī)框架化合物(MOFs)是由含氧、氮的有機(jī)配體和過渡金屬離子通過配位鍵自組裝形成的微孔網(wǎng)絡(luò)結(jié)構(gòu)晶體。與傳統(tǒng)的多孔材料相比,MOFs具有大的比表面積和孔隙,結(jié)構(gòu)多樣性和孔尺寸可調(diào)的特點(diǎn),在氣體存儲(chǔ)、分離、催化等方面都顯示了巨大的應(yīng)用前景。同時(shí),MOFs作為吸附脫硫劑在脫硫領(lǐng)域也表現(xiàn)出了優(yōu)于活性炭和分子篩的良好性能,引起了研究者的極大關(guān)注。然而,MOFs也存在一些問題,其大的比表面積和發(fā)達(dá)的孔隙結(jié)構(gòu)說明材料的色散力較弱,當(dāng)吸附小分子時(shí),吸附質(zhì)容易從骨架逸出。因此,為了提高M(jìn)OFs吸附性能,將MOFs進(jìn)行適當(dāng)改性。本文采用活性炭(AC)和氧化石墨(GO)對(duì)MOF-199進(jìn)行改性,通過水熱法將獲得改性后產(chǎn)物,即復(fù)合材料MAC和MGO。采用固定床評(píng)價(jià)其對(duì)硫化氫、甲硫醚以及乙硫醇?xì)怏w的動(dòng)態(tài)吸附行為。運(yùn)用XRD、FTIR、氮?dú)馕?脫附、Py-IR、SEM、TG-MS和XPS表征硫化前后樣品,并將樣品結(jié)構(gòu)和脫硫性能進(jìn)行關(guān)聯(lián)。與MOF-199相比,復(fù)合材料MAC形貌沒有明顯改變,但晶體結(jié)構(gòu)更為有序、比表面積提高、孔徑減小以及金屬不飽和位增多。而MOF-199經(jīng)與石墨烯復(fù)合后形貌發(fā)生了明顯的變化,形成的是方形薄片以一種有組織的方式疊在一起類似于層狀結(jié)構(gòu)的一種新材料,并且比表面積提高。固定床實(shí)驗(yàn)顯示,與MOF-199相比,MAC和MGO對(duì)三種硫化物吸附效果有顯著提高。這是因?yàn)锳C可能會(huì)包裹進(jìn)MGO-199空腔,引起孔徑減少和比表面積提高,GO表面的含氧官能團(tuán)和MOF-199的金屬中心結(jié)合導(dǎo)致形成額外的孔,這些性質(zhì)的提高都有利于提高材料的物理吸附性能。此外,MAC不飽和金屬中心的增加也對(duì)吸附硫化物做出貢獻(xiàn)。實(shí)驗(yàn)考察吸附溫度對(duì)MAC脫除三種硫化物的影響,發(fā)現(xiàn)吸附溫度會(huì)影響硫化物的吸附,研究還發(fā)現(xiàn),水汽對(duì)于MAC脫除硫化氫有促進(jìn)作用。制備的復(fù)合材料MAC的吸附性能優(yōu)于MGO,主要是因?yàn)榍罢叩谋缺砻娣e和孔容比后者高,MAC孔徑的減小和不飽和金屬位點(diǎn)的增加也有利于脫硫效果的提高。復(fù)合材料對(duì)三種硫化物的吸附機(jī)理不同,這是由于三種硫化物在MOFs結(jié)構(gòu)中產(chǎn)生的空間位阻效應(yīng)不同。硫化氫分子直徑最小,可與金屬中心直接接觸并發(fā)生化學(xué)反應(yīng),生成CuS。乙硫醇雖然分子直徑較大,但是分子一端為-SH,也能與金屬中心產(chǎn)生不可逆吸附反應(yīng)。甲硫醚分子直徑最大且兩端連有甲基,在MOFs骨架中產(chǎn)生的空間位阻最大,因此與金屬中心不發(fā)生反應(yīng),而以弱配位形式吸附。而正是由于甲硫醚以弱作用力與復(fù)合材料結(jié)合,產(chǎn)生的吸附是可逆的。研究表明,MAC和MGO經(jīng)3次循環(huán)后,其穿透硫容仍可達(dá)到初始硫容94%,是理想的硫醚吸附劑。
[Abstract]:Natural gas contains a certain amount of sulfides, which not only poisons the catalysts used in the process, but also causes serious pollution to the environment once the combustion is discharged into the atmosphere. Sulphides must therefore be removed. Among them, adsorption desulfurization has become a very competitive desulfurization technology because of its advantages of simple operation and mild process conditions. Organometallic frame compound (MOF) is a microporous network crystal composed of organic ligands containing oxygen, nitrogen and transition metal ions, which are self-assembled by coordination bonds. Compared with the traditional porous materials, MOFs have the characteristics of large specific surface area and pore size, structural diversity and adjustable pore size. They have shown great application prospects in gas storage, separation, catalysis and so on. At the same time, as adsorptive desulfurizers, MOFs also show better performance than activated carbon and molecular sieve in the field of desulfurization, which has attracted great attention of researchers. However, there are some problems in MOFs. Their large specific surface area and developed pore structure indicate that the dispersive force of the material is weak, and when adsorbing small molecules, the adsorbate is easy to escape from the skeleton. Therefore, in order to improve the adsorption properties of MOFs, MOFs was modified appropriately. In this paper, MOF-199 was modified by activated carbon (AC) and graphite oxide (GOO). The modified products, that is, MAC and MGO, were obtained by hydrothermal method. The dynamic adsorption behavior of hydrogen sulfide, methyl sulfide and ethanethiol was evaluated in a fixed bed. The samples before and after vulcanization were characterized by XRDX FTIR, nitrogen adsorption-desorption (Py-IRM) TG-MS and XPS, and the structure and desulfurization properties of the samples were correlated. Compared with MOF-199, the morphology of MAC has no obvious change, but the crystal structure is more orderly, the specific surface area is increased, the pore size is decreased and the unsaturated potential of metal is increased. However, the morphology of MOF-199 was obviously changed after composite with graphene, and the square sheet was stacked together in an organized manner similar to the lamellar structure, and the specific surface area was increased. Fixed-bed experiments showed that the adsorption of sulfides by MOF-199 and MGO was significantly improved. This is because AC may wrap into the MGO-199 cavity, resulting in reduced pore size and increased specific surface area, resulting in the combination of oxygenated functional groups on the go surface and the metal center of MOF-199 to form additional pores. The improvement of these properties is beneficial to the improvement of the physical adsorption properties of the materials. In addition, the increase of unsaturated metal centers also contributes to the adsorption of sulfides. The effect of adsorption temperature on the removal of three sulfides by MAC was investigated. It was found that the adsorption temperature would affect the adsorption of sulfides. It was also found that water vapor could promote the removal of hydrogen sulfide by MAC. The adsorption performance of the composite MAC is better than that of MGO.The main reason is that the reduction of pore size and the increase of unsaturated metal sites in the former are also beneficial to the improvement of desulphurization efficiency. The adsorption mechanism of the three sulfides in the composite is different, which is due to the different steric resistance effect of the three sulfides in the MOFs structure. The molecular diameter of hydrogen sulfide is the smallest, which can be directly contacted with the metal center and react with the metal center to form CuSs. Although the molecular diameter of ethanethiol is large, one end of the molecule is -SH, which can also produce irreversible adsorption reaction with the metal center. The methyl sulfide molecule has the largest diameter and methyl at both ends, which results in the largest steric resistance in the MOFs skeleton, so it does not react with the metal center and is adsorbed in the form of weak coordination. It is precisely because methyl sulfide binds to the composite by weak force that the adsorption is reversible. The results show that after three cycles, the penetrating sulfur capacity of MGO can still reach the initial sulfur capacity of 94. It is an ideal sorbent for sulfides.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O647.33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馮輝;曾勇平;居沈貴;;載銅5A分子篩在汽油模擬體系中脫硫性能的研究[J];燃料化學(xué)學(xué)報(bào);2006年01期
2 黃利華;;活性炭纖維復(fù)合材料的脫硫性能[J];四川環(huán)境;2007年06期
3 張守玉,王洋,呂俊復(fù),岳光溪;彬縣煤活性焦表面性質(zhì)對(duì)其脫硫性能的影響[J];中國礦業(yè)大學(xué)學(xué)報(bào);2003年06期
4 張香蘭;劉洋;李科;寇志勝;丁曙光;;活性半焦制備工藝條件對(duì)其脫硫性能的影響[J];煤炭轉(zhuǎn)化;2007年04期
5 王興;喬曉磊;王旭濤;金燕;;金屬鎂渣在流化床反應(yīng)器內(nèi)脫硫性能的實(shí)驗(yàn)研究[J];再生資源與循環(huán)經(jīng)濟(jì);2011年05期
6 李紅海;李婧;王偉文;李建隆;;離子液體脫硫性能研究與應(yīng)用進(jìn)展[J];化學(xué)工業(yè)與工程;2012年03期
7 白雪峰;郭樹才;;新法干餾半焦脫硫性能的研究[J];遼寧化工;1989年01期
8 侯相林,高蔭本,陳誦英;各種金屬氧化物高溫脫硫性能比較[J];環(huán)境工程;1997年03期
9 滕斌,高翔,劉海蛟,駱仲泱,倪明江,岑可法;添加劑對(duì)消石灰結(jié)構(gòu)特性和脫硫性能的影響[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2004年02期
10 張軍,林曉芬,印佳敏,范志林,徐益謙;生物質(zhì)焦脫硫性能實(shí)驗(yàn)研究[J];工程熱物理學(xué)報(bào);2005年03期
相關(guān)會(huì)議論文 前6條
1 侯影飛;孔瑛;楊金榮;張建輝;陳嶸;;施氏假單胞菌UP-1生物脫硫性能研究[A];第九屆全國化學(xué)工藝學(xué)術(shù)年會(huì)論文集[C];2005年
2 靳玲玲;李秀奇;王洪國;鞠秀芳;劉黎明;宋麗娟;;影響CeY分子篩吸附脫硫性能因素的研究[A];第五屆全國工業(yè)催化技術(shù)與應(yīng)用年會(huì)論文集(上冊(cè))[C];2008年
3 劉曉;云志;曹晶晶;史美仁;;新型脫硫材料SbSn金屬間化合物的制備及其脫硫性能研究[A];第一屆全國化學(xué)工程與生物化工年會(huì)論文摘要集(上)[C];2004年
4 馬金花;吳志明;云志;;SbSn金屬間化合物的機(jī)械合金化制備及其脫硫性能[A];第三屆全國化學(xué)工程與生物化工年會(huì)論文摘要集(下)[C];2006年
5 單佳慧;劉曉勤;姚虎卿;;沸石吸附劑用于燃料油深度脫硫性能研究[A];第三屆全國化學(xué)工程與生物化工年會(huì)論文摘要集(上)[C];2006年
6 李寶碩;苑世領(lǐng);;TiMgAlCu-HTLCs的制備及其煅燒衍生物在FCC再生煙氣脫SO_x中的應(yīng)用[A];中國化學(xué)會(huì)第十四屆膠體與界面化學(xué)會(huì)議論文摘要集-第6分會(huì):膠體與界面化學(xué)技術(shù)、應(yīng)用與產(chǎn)品[C];2013年
相關(guān)博士學(xué)位論文 前1條
1 馬雯雯;多酸基TiO_2低維納米材料的合成及其脫硫性能的研究[D];東北師范大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 陳瑩;PEG基功能化離子液體的合成及其脫硫性能研究[D];河北科技大學(xué);2015年
2 皮信信;再生過程對(duì)活性焦理化結(jié)構(gòu)及脫硫性能的影響[D];哈爾濱工業(yè)大學(xué);2016年
3 張曉飛;胺類離子液體的制備及其脫硫性能實(shí)驗(yàn)研究[D];河北科技大學(xué);2016年
4 周秀鴛;新型哌嗪型離子液體的制備及其脫硫性能研究[D];浙江大學(xué);2017年
5 朱涵慶;咪唑基離子液體的合成、表征及對(duì)模型油脫硫性能的研究[D];武漢科技大學(xué);2016年
6 李露露;空間位阻胺選擇脫硫性能的研究[D];西南石油大學(xué);2016年
7 付金貝;負(fù)載型固體雜多酸的制備及其脫硫性能研究[D];山東大學(xué);2017年
8 耿朝陽;負(fù)載銅、鎳改性活性炭的制備及脫硫性能的研究[D];昆明理工大學(xué);2017年
9 王興;金屬鎂渣在流化床反應(yīng)器內(nèi)脫硫性能的實(shí)驗(yàn)研究[D];太原理工大學(xué);2011年
10 曾璽;雙載體固定化脫硫菌及脫硫性能的研究[D];天津大學(xué);2008年
,本文編號(hào):1910575
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1910575.html