石墨烯量子點在水溶液中對汞離子、碘離子和有機小分子的檢測研究
發(fā)布時間:2018-05-17 20:17
本文選題:石墨烯量子點 + 熒光; 參考:《上海師范大學(xué)》2017年碩士論文
【摘要】:石墨烯量子點(GQDs)是一種只有一個原子層厚的二維碳材料,具有杰出的電子性能、機械性能和化學(xué)穩(wěn)定性。與傳統(tǒng)量子點相比,石墨烯量子點不僅具有突出的電子和光學(xué)優(yōu)勢,還具有毒性低、溶解度高、穩(wěn)定性高、光致發(fā)光、表面積大等優(yōu)點。因此,石墨烯量子點在熒光探針、光電設(shè)備、傳感器、細胞成像、藥物遞送、太陽能電池等領(lǐng)域具有廣闊的應(yīng)用前景。目前,石墨烯量子點的研究主要集中在熒光傳感器、生物成像和載藥等方面。到目前為止,石墨烯量子點的制備方法主要有水熱法、濃酸氧化法、溶劑熱法、紫外-芬頓氧化法、電化學(xué)氧化法、有機分子合成法、微波輔助氧化法及化學(xué)剝離碳纖維法等。使用的碳源主要有氧化石墨烯、石墨棒、石墨薄膜、碳納米管、碳纖維、炭黑、葡萄糖、檸檬酸以及樹葉等。在本論文中,我們以碳纖維作為碳源,通過化學(xué)剝離碳纖維法制備出石墨烯量子點,然后在石墨烯量子點上修飾胸腺嘧啶,所得材料可用于檢測汞離子,并可進一步用于碘離子和含巰基氨基酸的檢測。該傳感器具有靈敏度高、選擇性好、操作方法簡單、響應(yīng)時間迅速等優(yōu)點。本論文共包括以下四章。第一章綜述了石墨烯量子點的制備方法、性質(zhì)和應(yīng)用,并根據(jù)石墨烯量子點的熒光性質(zhì)設(shè)計了實驗方案。第二章中,我們制備了胸腺嘧啶修飾的石墨烯量子點,并利用這種材料進行了汞離子、碘離子、含巰基氨基酸的檢測實驗。采用化學(xué)剝離碳纖維法制備出石墨烯量子點,再以乙二胺為連接劑通過酰胺鍵將胸腺嘧啶修飾到石墨烯量子點上,得到胸腺嘧啶修飾的石墨烯量子點。加入汞離子后,胸腺嘧啶修飾的石墨烯量子點對汞離子具有較高的靈敏度和較好的選擇性,其對汞離子的檢出限為211nM。此外,基于“T-Hg2+-T”結(jié)構(gòu),發(fā)展了一種簡便的“turn on”型熒光探針。這種探針可以用來檢測碘離子和含巰基的氨基酸(如半胱氨酸、谷胱甘肽和高半胱氨酸)。首先在材料中加入汞離子,由于“T-Hg2+-T”結(jié)構(gòu)的生成,引起胸腺嘧啶修飾的石墨烯量子點發(fā)生團聚,導(dǎo)致熒光下降。若在此時,向溶液中加入碘離子,由于碘離子與汞配位生成更穩(wěn)定的絡(luò)合物,汞離子被競爭下來,“T-Hg2+-T”結(jié)構(gòu)被打開,熒光得到恢復(fù)。這種熒光探針對碘離子的檢出限為2.80μM。根據(jù)軟硬酸堿理論(HSAB),汞離子與巰基之間有很強的結(jié)合能力,因此結(jié)合了汞離子的胸腺嘧啶修飾石墨烯量子點可以用于識別含巰基氨基酸。通過這種方法制備出的熒光探針對半胱氨酸、谷胱甘肽、高半胱氨酸的檢出限分別為4.01μM、1.92μM、2.00μM。第三章中,我們研究了石墨烯量子點對三價鐵離子和抗壞血酸的檢測。由于石墨烯量子點上含有羥基、羧基等含氧官能團,三價鐵離子與這些含氧官能團具有很好的親和能力,引起石墨烯量子熒光強度下降。經(jīng)過實驗測定,石墨烯量子點對三價鐵離子的檢出限為5.7 nM。此外,抗壞血酸具有較強的還原性,三價鐵離子具有較強的氧化性,二者之間可以發(fā)生氧化還原反應(yīng)。此過程中,三價鐵離子被還原為二價鐵離子,導(dǎo)致三價鐵離子與石墨烯量子點上的含氧官能團之間的配位被破壞,石墨烯量子點的熒光得到恢復(fù)。石墨烯量子點與三價鐵離子的復(fù)合材料對抗壞血酸的檢出限為536 nM。此種方法選擇性好,靈敏度高。第四章根據(jù)本論文的實驗數(shù)據(jù)進行總結(jié),并對石墨烯量子點在光學(xué)領(lǐng)域的檢測研究進行預(yù)測。
[Abstract]:Graphene quantum dots (GQDs) is a two-dimensional carbon material with only one layer thickness. It has outstanding electronic properties, mechanical properties and chemical stability. Compared with traditional quantum dots, graphene quantum dots not only have outstanding electronic and optical advantages, but also have low toxicity, high solubility, high stability, photoluminescence and large surface area. Therefore, graphene quantum dots have broad applications in the fields of fluorescent probes, photoelectric devices, sensors, cell imaging, drug delivery, solar cells and other fields. At present, the research of graphene quantum dots is mainly focused on fluorescence sensors, bioimaging and drug loading. So far, the preparation methods of graphene quantum dots are mainly There are hydrothermal methods, concentrated acid oxidation, solvent heat, ultraviolet Fenton oxidation, electrochemical oxidation, organic molecular synthesis, microwave assisted oxidation and chemical stripping carbon fiber. The main carbon sources used are graphene oxide, graphite rod, graphite film, carbon nanotube, carbon fiber, carbon black, glucose, citric acid and leaves. We use carbon fiber as carbon source to prepare graphene quantum dots by chemical stripping carbon fiber method, and then modify thymine on graphene quantum dots. The obtained materials can be used to detect mercury ions and can be used for the detection of iodide ions and sulfhydryl amino acids. The sensor has high sensitivity, good selectivity and simple operation method. The following four chapters are included in this paper. Chapter 1 summarizes the preparation methods, properties and applications of graphene quantum dots, and designs an experimental scheme based on the fluorescence properties of graphene quantum dots. In the second chapter, we prepared thymine modified stony quantum dots and used this material to carry out mercury ionization. A quantum dot of graphene was prepared by chemical stripping carbon fiber method, and then the thymine was modified to the graphene quantum dots with acetamide bond with acetamide as a connector. The graphene quantum dots modified by thymine after adding mercury ions was added to the quantum dots. With high sensitivity and selectivity for mercury ions, the detection limit for mercury ions is 211nM.. Based on the "T-Hg2+-T" structure, a simple "turn on" fluorescent probe has been developed. This probe can be used to detect iodide ions and amino acids containing sulfhydryl groups (such as cysteine, glutathione and homocysteine). With the addition of mercury ions in the material, due to the formation of the "T-Hg2+-T" structure, the graphene quantum dots modified by thymine resulted in the aggregation of graphene quantum dots, which resulted in the drop of fluorescence. If at this time, iodide ions were added to the solution and the iodide ions and mercury complexes formed a more stable complex. The mercury separation was competitive, the "T-Hg2+-T" structure was opened and fluorescence was opened. The detection limit of the fluorescence probe to iodine ion is 2.80 mu M. according to the theory of soft and hard acid base (HSAB), and there is a strong binding ability between the mercury ion and the sulfhydryl group. Therefore, the mercury ion's thymine modified Shi Moxi quantum dots can be used to identify the sulfhydryl amino acids. The detection limits of ammonia, glutathione, and homocysteine are 4.01 M, 1.92 M and 2 M. third. We studied the detection of ferric ion and ascorbic acid by graphene quantum dots. The intensity of graphene quantum fluorescence decreases. The detection limit of the graphene quantum dots on trivalent iron ions is 5.7 nM., the ascorbic acid has strong reducibility, the trivalent iron ions have strong oxidization and the redox reaction can occur between the two. In this process, the trivalent iron ions are reduced to two valence iron. Ions, which cause the coordination between the trivalent iron ions and the oxygen functional groups on the graphene quantum dots, is destroyed, the fluorescence of Shi Moxi quantum dots is restored. The detection limit of the composite material of graphene quantum dots and trivalent iron ions against bad blood acid is 536 nM., the selectivity is good and the sensitivity is high. The fourth chapter is based on the number of experiments in this paper. It is concluded that the detection of graphene quantum dots in optical field is forecasted.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O657.3
【相似文獻】
相關(guān)期刊論文 前10條
1 吳峰;蔡繼業(yè);;基于量子點的熒光共振能量轉(zhuǎn)移的應(yīng)用[J];化學(xué)與生物工程;2007年01期
2 季雷華;高素蓮;張斌;;量子點的合成、毒理學(xué)及其應(yīng)用[J];環(huán)境化學(xué);2008年05期
3 王富;劉春艷;;發(fā)光碳量子點的合成及應(yīng)用[J];影像科學(xué)與光化學(xué);2011年04期
4 伊魁宇;王猛;邵明云;;量子點作為離子探針的分析應(yīng)用[J];廣州化工;2012年11期
5 羅慧;李曦;方婷婷;劉鵬;;量子點的毒性研究進展[J];材料導(dǎo)報;2013年19期
6 田瑞雪;武玲玲;趙清;胡勝亮;楊金龍;;碳量子點的氨基化及其對發(fā)光性能的影響[J];化工新型材料;2014年01期
7 ;“量子點”晶體將推動部分物理工藝的進步[J];光機電信息;2002年10期
8 徐萬幫;汪勇先;許榮輝;尹端l,
本文編號:1902714
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1902714.html
最近更新
教材專著