功能性卟啉化合物的合成及其性能研究
本文選題:卟啉化合物 + 光動力治療; 參考:《中國地質(zhì)大學(xué)》2017年博士論文
【摘要】:卟啉化合物具有獨特的光物理和光化學(xué)性質(zhì),被廣泛應(yīng)用于眾多前沿科技領(lǐng)域,尤其在光動力治療和有機(jī)太陽能電池領(lǐng)域的應(yīng)用一直以來都是研究的熱點。本論文開展了卟啉雙光子光敏劑和有機(jī)太陽能電池材料的設(shè)計合成及性質(zhì)研究,主要研究內(nèi)容如下:1、卟啉是目前臨床試驗和已批準(zhǔn)使用的最主要的光敏劑品種。然而,卟啉類光敏劑對紅光和近紅外光的吸收弱,嚴(yán)重限制了其在光動力治療中的應(yīng)用。卟啉類光敏劑由于最大吸收波長位于400-500 nm,若采用雙光子激發(fā),激發(fā)波長范圍為800-1000 nm,正好位于光動力治療窗口,能夠用于深部腫瘤和大型腫瘤的治療。研制具有雙光子吸收能力強、1O2量子產(chǎn)率高、生物相容性好、并能在腫瘤組織中富集的卟啉類雙光子激發(fā)光敏劑是雙光子光動力治療的關(guān)鍵。本論文設(shè)計合成了一種氨基酸修飾、乙炔橋聯(lián)的兩親性陽離子結(jié)構(gòu)的新型雙光子光動力治療光敏劑AlaPZn-PhenRu,擬通過在卟啉環(huán)上引入氨基酸來增加其水溶性和生物相容性,提高其對腫瘤細(xì)胞的滲透性和在腫瘤組織細(xì)胞中的富集,改善代謝性能。光物理和光化學(xué)性質(zhì)研究結(jié)果表明,該化合物的最大吸收波長為455 nm,同卟啉單體比較,發(fā)生了明顯的紅移,并且具有很高的產(chǎn)生單線態(tài)氧的能力,在空氣飽和的DMSO溶液中其單線態(tài)氧量子產(chǎn)率達(dá)0.94。光動力生物活性測試結(jié)果表明,該光敏劑在達(dá)到730 nM劑量時未表現(xiàn)出暗毒性,而在8J/cm2光照條件下對人類鼻咽癌HK-1癌細(xì)胞的半數(shù)致死量IC50值為310 nM,并且能夠選擇地富集在癌細(xì)胞內(nèi)溶酶體中,是一種很有潛力的雙光子光動力治療光敏劑。2、卟啉化合物為大π共軛體系結(jié)構(gòu),具有良好的電子緩沖性和光電特性,特別在可見光和近紅外區(qū)有強的光捕獲特性,是一類重要的有機(jī)光電材料,在體異質(zhì)結(jié)有機(jī)太陽能電池方面已經(jīng)得到較為深入的研究。但是,目前具有較高效率的小分子卟啉類電池材料多是基于A-D-A(Acceptor-Donor-Acceptor)型結(jié)構(gòu),合成過程一般會用到有毒的錫試劑以及危險的鋰試劑,并且分子的共軛性較差,有可能制約其π-π堆積,進(jìn)而影響分子間電荷傳輸。本論文設(shè)計合成了兩種基于卟啉為核、炔鍵為橋、饒丹寧封端、且具有不同外圍取代烷基鏈的A-π-D-π-A型卟啉給體材料(14BPZnRDN,NBPZnRDN)和兩種基于卟啉為核、苯環(huán)為橋、傒二酰亞胺為末端的A-π-D-π-A型卟啉受體材料(TPPPZn,DiPPPZn)。炔基的引入使該結(jié)構(gòu)具有更大的共軛平面,提高了分子間的π-π堆積,從而增強了電荷傳輸,且該分子結(jié)構(gòu)一般采用Sonogashira反應(yīng)合成避免了使用危險試劑。光物理性質(zhì)和電化學(xué)性質(zhì)研究發(fā)現(xiàn),給體材料14BPZnRDN的吸收邊可以延伸至800 nm,光學(xué)帶隙為1.67 eV,屬于較窄帶隙給體材料,易于捕獲更多的太陽光,太陽能電池的光電轉(zhuǎn)換效率為2.26%,優(yōu)于沒有外圍取代烷基鏈的NBPZnRDN,表明卟啉β位烷基鏈的引入改善了溶解性和空間結(jié)構(gòu),優(yōu)化了在太陽能電池共混層的自組裝行為,增強了膜的性能,從而提升電池的光電轉(zhuǎn)換效率。受體材料TPPPZn的吸收范圍為450-530 nm,與吸收范圍為625-700 nm的商業(yè)化給體材料PCE-10較為互補,共混膜吸光范圍覆蓋了350-800 nm,說明兩者在共混膜中的吸收并不是簡單的物理疊加。TPPPZn的LUMO值約為-3.63 eV,接近富勒烯材料,有利于接受電子,同時TPPPZn具有良好的熱穩(wěn)定性(達(dá)400 ℃),其制備的有機(jī)太陽能電池EQE、Jsc、FF以及PCE分別為70%、12.51 mA·cm-2、57.7%和6.28%,性能表現(xiàn)優(yōu)于DiPPPZn,說明分子結(jié)構(gòu)中引入傒二酰亞胺能改善其空間結(jié)構(gòu)排布,四對稱結(jié)構(gòu)更利于分子自組裝,進(jìn)而提升其光伏性能。以上兩類材料結(jié)構(gòu)新穎,受體材料對應(yīng)的太陽能電池轉(zhuǎn)化效率較高,是一種頗具潛力的小分子受體材料,未見相關(guān)報道。
[Abstract]:Porphyrin compounds have been widely used in many frontiers of science and technology because of their unique photophysical and photochemical properties, especially in the field of photodynamic therapy and organic solar cells. The design, synthesis and characterization of porphyrin two-photon photosensitizers and organic solar cells have been carried out in this paper. The main research contents are as follows: 1, porphyrin is the most important photosensitizer in clinical trials and approved. However, the absorption of porphyrin photosensitizer to red and near infrared light is weak, which seriously restricts its application in photodynamic therapy. Porphyrin photosensitizers are used for two-photon excitation due to the maximum absorption wavelength at 400-500 nm. The excitation wavelength range is 800-1000 nm, which is exactly located in the photodynamic therapy window. It can be used for the treatment of deep tumors and large tumors. The key to double photon photodynamic therapy is to develop photosensitizers with high Biphoton absorption ability, high quantum yield of 1O2, good biocompatibility and rich in tumor tissues. In this paper, a novel two-photon photodynamic photodynamic therapy photosensitizer AlaPZn-PhenRu, an amino acid modified, two amphiphilic cationic structure of acetylene, is designed to increase its water solubility and biocompatibility by introducing amino acids on the porphyrin ring to improve its permeability to tumor cells and the enrichment of its cells in the tumor tissue. The results of photophysical and photochemical properties show that the maximum absorption wavelength of the compound is 455 nm. Compared with the porphyrin monomer, a significant red shift has occurred and the ability to produce a single state oxygen is very high. In the air saturated DMSO solution, the quantum yield of the single state oxygen is up to the 0.94. photodynamic bioactivity test result. It showed that the photosensitizer did not show dark toxicity at the dose of 730 nM, while the median lethal dose of IC50 of human nasopharyngeal carcinoma HK-1 cancer cells was 310 nM under 8J/cm2 illumination, and could be selectively enriched in the lysosomes of the cancer cells. It was a potential two-photon photodynamic therapy photosensitizer.2. The porphyrin compound was large PI. The yoke structure, with good electronic buffering and photoelectric properties, is an important class of organic photoelectric materials, especially in the visible and near infrared regions, and has been deeply studied in the aspect of the bulk heterojunction organic solar cells. However, the small molecular porphyrin battery materials with high efficiency before the eyes have been found. Most of them are based on the A-D-A (Acceptor-Donor-Acceptor) structure. The synthesis process usually uses toxic tin reagents and dangerous lithium reagents, and the conjugation of the molecules is poor. It is possible to restrict the pion pion accumulation and affect the intermolecular charge transfer. This paper has designed and synthesized two kinds of porphyrin as the core, the alkyne bond as the bridge, and the Rao Denning end. A- PI -D- PI -A porphyrin donor materials (14BPZnRDN, NBPZnRDN) and two kinds of A- PI -D- PI -A porphyrin receptor materials (TPPPZn, DiPPPZn) based on the porphyrin as the core, the benzene ring as the bridge, and the introduction of the alkynyl group (TPPPZn, DiPPPZn). The charge transfer is enhanced, and the molecular structure is generally synthesized by Sonogashira reaction to avoid the use of dangerous reagents. The study of photophysical and electrochemical properties shows that the absorption edge of the donor material 14BPZnRDN can extend to 800 nm and the optical band gap is 1.67 eV, which belongs to the narrow-band gap material, and is easy to capture more solar light and solar energy. The photoelectric conversion efficiency of the battery is 2.26%, which is superior to the NBPZnRDN without the external substitutions of the alkyl chain. It shows that the introduction of the porphyrin beta alkyl chain improves the solubility and the spatial structure, optimizes the self assembly behavior of the blends of the solar cell, enhances the performance of the membrane, and thus improves the photoelectric conversion efficiency of the battery. The absorption model of the receptor material TPPPZn is improved. The circumference is 450-530 nm, which is complementary to the commercialized material PCE-10 with the absorption range of 625-700 nm. The light absorption range of the blend film covers 350-800 nm, indicating that the absorption in the blend film is not a simple physical superposition of.TPPPZn with a LUMO value of about -3.63 eV, which is close to the fullerene material and is beneficial to the acceptance of electrons, while TPPPZn has a good effect. The thermal stability (400 degrees C), the EQE, Jsc, FF and PCE of the organic solar cells are 70%, 12.51 mA, cm-2,57.7% and 6.28% respectively. The performance performance is better than that of DiPPPZn. It shows that the introduction of two imide can improve the layout of the space structure in the molecular structure, and the four symmetry structure is more beneficial to the molecular self-assembly and then improves the photovoltaic performance of the above two categories. The material structure is novel, and the conversion efficiency of solar cells with corresponding receptor materials is relatively high. It is a promising small molecule receptor material.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O626
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 彭小彬,梁世強;卟啉化合物與核酸的相互作用研究[J];化學(xué)進(jìn)展;2001年05期
2 黃丹,田澍;卟啉及金屬卟啉化合物的研究進(jìn)展[J];江蘇石油化工學(xué)院學(xué)報;2003年03期
3 崔海波;;卟啉化合物的合成方法[J];河北化工;2008年03期
4 王曉梅;李雅;韓士田;劉彥欽;;幾種卟啉化合物的合成及表征[J];化學(xué)試劑;2009年05期
5 湯瑩;胡炳成;劉祖亮;;卟啉化合物的合成[J];廣州化工;2010年10期
6 王金旺 ,呂德宣 ,榮光華;原油中金屬卟啉化合物的測定法[J];石油實驗地質(zhì);1980年01期
7 范健;;關(guān)于卟啉化合物命名的建議[J];分析化學(xué);1982年01期
8 ;治癌藥卟啉化合物的實用目標(biāo)[J];化學(xué)通報;1986年07期
9 盧昌利;侯安新;;卟啉化合物的合成與應(yīng)用研究進(jìn)展[J];廣東化工;2013年20期
10 沈致隆,傅翔,段振寧;釩氧卟啉化合物的氧化還原電位[J];分析化學(xué);2000年08期
相關(guān)會議論文 前10條
1 蔣成瑞;趙紅莉;袁慧慧;藍(lán)閩波;;卟啉化合物的合成及其光學(xué)性質(zhì)[A];21世紀(jì)太陽能新技術(shù)——2003年中國太陽能學(xué)會學(xué)術(shù)年會論文集[C];2003年
2 侯軍;周子彥;吳學(xué);;新型卟啉化合物的合成及其光譜性質(zhì)[A];中國化學(xué)會第二十五屆學(xué)術(shù)年會論文摘要集(下冊)[C];2006年
3 于克貴;周成合;李東紅;刁俊林;;一種新型卟啉的合成研究[A];第五屆全國化學(xué)生物學(xué)學(xué)術(shù)會議論文摘要集[C];2007年
4 施秀英;朱義州;鄭健禺;;三嗪鍵聯(lián)卟啉化合物的合成及其分子識別[A];全國第十四屆大環(huán)化學(xué)暨第六屆超分子化學(xué)學(xué)術(shù)討論會論文專輯[C];2008年
5 郝青山;陳金平;李Z,
本文編號:1874324
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1874324.html