負載型鎳基納米復合電極材料的合成、表征及應用
發(fā)布時間:2018-05-09 09:10
本文選題:負載型鎳基納米片 + 簡易合成 ; 參考:《浙江大學》2017年碩士論文
【摘要】:納米材料由于其結構的特殊性而表現(xiàn)出獨特的物理化學性質(zhì),作為電極材料在電化學領域比如傳感器、光電催化等方面展現(xiàn)出巨大的應用潛力,但是目前以貴金屬電催化劑為代表的納米材料由于成本等問題極大地限制其大規(guī)模應用。鎳基納米材料由于價格低廉、儲量豐富、催化性能優(yōu)異等優(yōu)點成為理想的替代材料。但如何實現(xiàn)負載型鎳基納米結構催化劑簡易負載,以及如何構建高效催化劑-半導體光電催化體系仍然具有很大挑戰(zhàn)。因此,針對目前負載型鎳基納米結構催化劑合成過程繁瑣、形貌難以控制以及界面相容性差等問題,本文系統(tǒng)研究了負載型鎳基納米片催化劑的一步法制備工藝,并詳細探究了復合電極材料結構與電/光電催化性能之間的關系。本文為理性設計、合成類似負載型納米結構復合電極提供了重要思路和借鑒。主要內(nèi)容如下:1.通過一步表面活性劑模板法制備了垂直于石墨片(GD)基底電極生長的NiO納米片(s-NiO)陣列,并探究了其在無酶電化學葡萄糖傳感器中應用。研究表明該復合電極所呈現(xiàn)的三維多孔納米片陣列結構能夠提供較多的催化活性位點和較大的電極-電解質(zhì)界面接觸面積,有效地提高了復合電極對葡萄糖的催化氧化性能:靈敏度高、檢測范圍寬、選擇性和穩(wěn)定性好。此外,進一步研究發(fā)現(xiàn)該三維多孔納米片陣列結構能夠提供足夠開放的空間,有利于氧氣泡的順利釋放,這對于復合電極的穩(wěn)定性至關重要。2.采用簡單的化學浴沉積法制備了 NiO/TiO2納米陣列復合光陽極,并將其應用于光電化學葡萄糖傳感器。研究表明:NiO納米片薄層一方面可以有效地促進TiO2光電極表面光生載流子的快速轉移;另一方面能夠?qū)崿F(xiàn)葡萄糖高效催化氧化。NiO/TiO2復合光陽極展現(xiàn)出優(yōu)異的光電催化氧化葡萄糖性能,能夠?qū)崿F(xiàn)低偏壓下對低濃度葡萄糖含量的定量檢測,而且表現(xiàn)出極好的選擇性和良好的穩(wěn)定性。3.采用溫和的電沉積法成功地制備了 NiFe(OH)x/BiVO4核-殼納米結構復合光陽極,并探究了其光電催化分解水性能。研究表明NiFe(OH)x二維納米片具有優(yōu)異的電催化性能,能夠有效地加速光陽極表面水氧化反應動力學,促進BiVO4光陽極表面空穴的利用,從而顯著增強復合光陽極光電催化分解水性能。
[Abstract]:Nanomaterials exhibit unique physical and chemical properties due to their structural particularity. As electrode materials, nanomaterials have shown great potential for application in electrochemical fields such as sensors, photocatalysis and so on. However, nanomaterials, represented by noble metal electrocatalysts, have greatly limited their large-scale application due to cost problems. Nickel-based nanomaterials have become an ideal substitute because of their low price, abundant reserves and excellent catalytic performance. However, how to realize the simple support of supported nickel based nanostructured catalysts and how to construct a highly efficient catalyst-semiconductor photocatalytic system still have great challenges. Therefore, in view of the complex synthesis process, difficult morphology control and poor interfacial compatibility of supported nickel based nanostructured catalysts, the one-step preparation process of supported nickel based nanocrystalline catalysts was systematically studied in this paper. The relationship between the structure of composite electrode materials and the electrochemical / photocatalytic properties was investigated in detail. This paper provides an important idea and reference for rational design and synthesis of nanostructured composite electrodes similar to load. The main content is as follows: 1. The NiO nanocrystalline nio arrays perpendicular to graphite substrate electrodes were prepared by a one-step surfactant template method and their applications in enzymatic electrochemical glucose sensors were investigated. The results show that the three-dimensional porous nanochip array structure of the composite electrode can provide more catalytic active sites and larger contact area between electrode and electrolyte interface. The catalytic oxidation performance of the composite electrode for glucose was improved effectively: high sensitivity, wide detection range, good selectivity and stability. In addition, it is found that the three-dimensional porous nanochip array structure can provide enough open space for the smooth release of oxygen bubble, which is very important for the stability of composite electrode. The composite photoanode of NiO/TiO2 nanoarray was prepared by simple chemical bath deposition method and applied to photoelectric chemical glucose sensor. The results show that on the one hand, the thin layer of w / nio nanochip can effectively promote the fast transfer of photogenerated carriers on the surface of TiO2 photoelectrode. On the other hand, it can realize high efficiency catalytic oxidation of glucose. Nio / TiO2 composite photoanode exhibits excellent photocatalytic oxidation of glucose, and can realize quantitative detection of low concentration of glucose at low bias voltage. And showed excellent selectivity and good stability. The NiFe(OH)x/BiVO4 core-shell nanostructure photoanode was successfully prepared by mild electrodeposition, and its photocatalytic properties of water decomposition were investigated. The results show that NiFe(OH)x nanoparticles have excellent electrocatalytic performance, which can accelerate the kinetics of photoanode surface water oxidation, promote the utilization of holes in BiVO4 photoanode surface, and enhance the photocatalytic performance of composite photoanode for water decomposition.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ426;O646
【參考文獻】
相關期刊論文 前3條
1 孫兵;艾仕云;;光電化學傳感器的構建及應用[J];化學進展;2014年05期
2 王光麗;徐靜娟;陳洪淵;;光電化學傳感器的研究進展[J];中國科學(B輯:化學);2009年11期
3 彭芳;朱德榮;司士輝;肖輝;;光電化學型半導體生物傳感器[J];化學進展;2008年04期
,本文編號:1865425
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1865425.html
最近更新
教材專著