計算機模擬不對稱鈾酰-Salophen配合物分子識別性能的研究
本文選題:密度泛函理論 + 不對稱鈾酰-salophen; 參考:《南華大學(xué)》2016年碩士論文
【摘要】:實驗中很難通過提純得到純凈的鈾酰-salophen,所以實驗方法很難得到分子的一些特性參數(shù),也很難得到鈾酰-salophen與其他分子之間發(fā)生相互作用形成的復(fù)合物的一些特征參數(shù),但是通過理論計算,可以很好地解決這個問題,理論計算可以得到鈾酰-salophen及形成的復(fù)合物的紅外光譜,幾何構(gòu)型,分子軌道,電子結(jié)構(gòu)等數(shù)據(jù)參數(shù)。根據(jù)鈾酰-salophen結(jié)構(gòu)特征,在鈾酰-salophen的一側(cè)引入芳香基,使鈾酰-salophen具有分子手性,所以本文基于理論計算,在分子水平上對鈾酰-salophen、鈾酰-salophen衍生物及其與其他分子形成的復(fù)合物進行研究特殊的分子結(jié)構(gòu)。利用DFT的計算方法,理論上計算了三種鈾酰-salophen受體與客體小分子之間的結(jié)合能力。計算結(jié)果表明,受體與客體通過鈾原子(U)與氧原子(O3)的配位作用結(jié)合一起,且結(jié)合能力隨著受體上取代基的增大而增大;不對稱的受體的鈾原子(U)與客體氧原子(O3)形成的鈾氧鍵(U-O3)的穩(wěn)定性大于相應(yīng)的對稱的受體與客體之間的鈾氧鍵(U-O3)的穩(wěn)定性;配位后客體小分子上的碳碳鍵(C=C)與碳氧鍵(C=O)之間的電子密度減弱。通過計算受體3與一對手性分子之間的結(jié)合能及單體與復(fù)合物的CD光譜,得出受體3對手性分子的選擇性是有區(qū)別的。據(jù)上述分析不對稱鈾酰-salophen具有分子識別能力。關(guān)于鈾酰-salophen與其他分子形成氫鍵的報道很少,尤其鈾酰-salophen中的鈾酰上的兩個氧原子參與形成的氫鍵鮮有報道,所以我們根據(jù)鈾酰-salophen分子上的原子的特點,進一步從理論模擬了不對稱鈾酰-salophen中C-O和U=O的氧原子與四氫吡咯之間氫鍵情況,所以采用上述計算方法,對鈾酰-salophen與四氫吡咯及水分子之間形成的氫鍵進行了理論計算及分析.結(jié)果表明體系1和體系2中的氫鍵鍵長都小于2.28?,鍵角都在160°~178°之間,體系1中salophen的O1與四氫吡咯上的H1之間的氫鍵相互作用能EHB=-10.658 kJ/mol,在體系2中鈾酰的O3與四氫吡咯上的H3及O1與H1之間的氫鍵相互作用能分別為EHB=-7.989 kJ/mol、EHB=-11.114 kJ/mol,鈾酰-salophen中的C-O和U=O均可與四氫吡咯形成氫鍵,且C-O···H-N穩(wěn)定性大于U=O···H-N.為設(shè)計基于鈾配合物的分子組裝及與其他分子形成氫鍵的實驗研究提供方理論指導(dǎo)。
[Abstract]:It is difficult to obtain pure uranyl -salophen by purification in the experiment, so it is difficult to get some characteristic parameters of the molecule and some characteristic parameters of the complex formed by the interaction between uranyl -salophen and other molecules. However, the theoretical calculation can solve the problem well, and the theoretical calculation can be obtained. In order to obtain the infrared spectra, geometric configuration, molecular orbitals and electronic structures of uranyl -salophen and its complex, according to the structure characteristics of uranyl -salophen, the aromatic group was introduced on one side of uranyl -salophen to make uranyl -salophen molecular chirality, so based on the theoretical calculation, at the molecular level, the uranyl -salophen was on the molecular level. The specific molecular structure of uranyl -salophen derivatives and their complexes formed with other molecules is studied. The binding ability of three uranyl -salophen receptors to small molecules of the guest is calculated by DFT calculation. The results show that the receptor and the object bind to the coordination of uranium atom (U) with oxygen atom (O3). The stability of the uranium oxygen bond (U-O3) formed by the uranium atom (U) of the asymmetric receptor and the guest oxygen atom (O3) is greater than that of the corresponding symmetric receptor and guest uranium oxygen bond (U-O3), and between the carbon carbon bond (C=C) and the carbon oxygen bond (C=O) on the small molecule after the coordination. The electron density is weakened. By calculating the binding energy between the receptor 3 and a pair of chiral molecules and the CD spectra of the monomers and complexes, the selectivity of the receptor 3 is distinguished. According to the above analysis, the asymmetric uranyl -salophen has the ability to identify the molecules. The reports of the hydrogen bonds formed by uranyl -salophen and other molecules are rarely reported. The hydrogen bonds formed by two oxygen atoms in the uranyl -salophen are rarely reported. So we further theoretically simulated the hydrogen bond between the oxygen atoms of C-O and U=O in the unsymmetrical uranyl -salophen and the four hydrogen pyrrole in the asymmetric uranyl -salophen by the characteristics of the atoms on the uranyl -salophen molecule, so the above calculation method was used for uranyl -sal. The hydrogen bond formed between ophen and four hydrogen pyrrole and water molecules has been theoretically calculated and analyzed. The results show that the hydrogen bond length of the system 1 and system 2 is less than 2.28? The bond angle is between 160 and ~178 degrees. The hydrogen bond interaction between O1 and H1 on the four pyrrole in system 1 can be EHB=-10.658 kJ/mol, and the O3 of uranyl in system 2 The hydrogen bond interaction between H3 and O1 on four pyrrole can be EHB=-7.989 kJ/mol, EHB=-11.114 kJ/mol respectively. C-O and U=O in uranyl -salophen can form hydrogen bonds with four hydrogen pyrrole, and C-O. To guide the theory of the supplier.
【學(xué)位授予單位】:南華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:O641.4
【參考文獻】
相關(guān)期刊論文 前8條
1 高莎;蘭文波;林英武;廖力夫;聶長明;;鈾酰-Salophen受體對α,β-不飽和羰基化合物及手性客體的分子識別(英文)[J];物理化學(xué)學(xué)報;2016年03期
2 聶長明;李小龍;肖云霞;羅娟;張方帥;;鈾酰-Salophen與環(huán)己烯酮的作用模式[J];核科學(xué)與工程;2015年02期
3 陸遙;馮冠儒;李巖松;龍桂魯;;真實空間的相互作用費米子體系動力學(xué)實驗數(shù)字量子模擬(英文)[J];Science Bulletin;2015年02期
4 王志軍;畢開西;;Gaussian09/GaussView在光譜實驗教學(xué)中的應(yīng)用[J];長治學(xué)院學(xué)報;2014年02期
5 蘇玲;孟令鵬;鄭世鈞;曾艷麗;;N_2O與HX(X=F,Cl,Br)分子間作用的電子密度拓撲研究[J];計算機與應(yīng)用化學(xué);2011年02期
6 劉懿;呂海港;胡拖平;李巧玲;;用AIM理論研究水體系中K~+與水分子之間的成鍵[J];山東化工;2010年04期
7 ;Stereochemistry and solid-state circular dichroism spectroscopy of eight-coordinate chiral lanthanide complexes[J];Science in China(Series B:Chemistry);2009年11期
8 劉范;Mulliken集居數(shù)的基本關(guān)系[J];化學(xué)研究與應(yīng)用;1990年02期
,本文編號:1865032
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1865032.html