天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化學(xué)論文 >

新型納米陣列電極的構(gòu)建及其在氣體參與的電催化反應(yīng)中的應(yīng)用

發(fā)布時(shí)間:2018-04-30 02:40

  本文選題:納米陣列 + 表面浸潤(rùn)性。 參考:《北京化工大學(xué)》2017年博士論文


【摘要】:氣體參與的電催化反應(yīng)包括氣體溢出反應(yīng)(析氫、析氧、析氯反應(yīng))和氣體消耗反應(yīng)(氧還原和氫氧化反應(yīng)),是涉及一些新型能源:電催化制氫、燃料電池(氫-氧,甲醇燃料電池等)和金屬-空氣電池的重要反應(yīng)過(guò)程,提高這些電催化反應(yīng)的效率和降低反應(yīng)的過(guò)電位,對(duì)于提高新能源的轉(zhuǎn)化和儲(chǔ)存效率和降低反應(yīng)能耗具有重要意義,為新能源技術(shù)取代傳統(tǒng)能源提供更多的可能性。這些催化過(guò)程均涉及到氣體的傳質(zhì)過(guò)程,方向性相反,即氣體溢出反應(yīng)需要?dú)怏w盡快脫離電極表面向液相傳質(zhì),而氣體消耗反應(yīng)則需要?dú)怏w快速?gòu)囊合嘞螂姌O表面?zhèn)鬏?因此對(duì)于氣體參與的電催化反應(yīng)不僅需要有廉價(jià)、優(yōu)異的催化劑來(lái)降低催化反應(yīng)的過(guò)電位來(lái)降低能耗,同時(shí)也需要構(gòu)筑特殊浸潤(rùn)性的電極表面來(lái)加快氣體在電極表面的傳質(zhì)過(guò)程,來(lái)提高催化反應(yīng)效率。本論文通過(guò)構(gòu)筑一系列納米陣列與表面修飾相結(jié)合制備特殊浸潤(rùn)性的電極結(jié)構(gòu),研究氣體、離子在結(jié)構(gòu)化電極表面的傳質(zhì)狀態(tài)及其相關(guān)的電化學(xué)性能,基于陣列的結(jié)構(gòu)化優(yōu)勢(shì),通過(guò)原位磷化陣列前驅(qū)體轉(zhuǎn)化制備三元金屬磷化物作為雙功能催化劑,并研究這類新型且結(jié)構(gòu)化的電極在氣體參與的電催化反應(yīng)中的性能,具體研究?jī)?nèi)容如下:1.超疏氣的Pt納米陣列的構(gòu)筑及其水下的優(yōu)異析氫活性通過(guò)恒電位和循環(huán)伏安的電化學(xué)沉積方法分別在鈦片基底上制備得到不同形貌的納米陣列和Pt納米球,作為對(duì)比,通過(guò)離子濺射制備Pt平面電極,研究三種具有不同表面粗糙度結(jié)構(gòu)的Pt電極,在水下的氣泡粘附行為和氣泡接觸行為,以及在析氫電催化中的活性。研究表明,具有最高粗糙度的Pt納米陣列表現(xiàn)出超疏氣性質(zhì),與氣泡的相互作用力最小,在電催化析氫過(guò)程中表現(xiàn)出最小氣體溢出的尺寸和快的脫離速度,進(jìn)而在催化活性和穩(wěn)定性上也有很好的表現(xiàn),揭示了通過(guò)構(gòu)筑親水陣列結(jié)構(gòu)可以改變界面的浸潤(rùn)性進(jìn)而改變氣泡在界面的行為,在電催化中有利于改善氣泡的溢出行為,為其他氣體溢出反應(yīng)提供了一種構(gòu)筑有效電極的思路。2.陣列結(jié)構(gòu)化的三元金屬磷化物作為雙功能催化劑在全水分解中的應(yīng)用以Ni(N03)2和Co(N03)2分別為Ni源和Co源,以尿素為沉淀劑,以泡沫鎳為基底,通過(guò)水熱合成的方法制備Ni-Co前驅(qū)體納米片陣列,并以此陣列結(jié)構(gòu)為模板,通過(guò)CVD的方法原位磷化得到NiCoP納米片陣列電極,通過(guò)摻雜改變單金屬磷化物表面電子結(jié)構(gòu),提高其析氫催化活性,而且作為雙功能催化劑的磷化物,在析氧催化過(guò)程中,過(guò)渡金屬離子的變價(jià)在析氧起峰電位之前,金屬磷化物的外側(cè)先被氧化成相應(yīng)的金屬輕基氧化物或氧化物,核殼結(jié)構(gòu)使其在析氧反應(yīng)中也有不錯(cuò)的表現(xiàn),另外,陣列結(jié)構(gòu)的高度有序多孔結(jié)構(gòu)增加了電極表面的粗糙度,提高了電極表面的疏氣性,減少了氣泡脫離時(shí)帶來(lái)的擾動(dòng),增加了析氫析氧工作穩(wěn)定性,在全水分解中也具有很好的表現(xiàn)。利用同樣的水熱合成方法制備多元金屬納米陣列跟后續(xù)原位磷化的方法,改變投料的金屬鹽溶液,在泡沫鎳上合成了鐵摻雜的Ni2P納米片陣列,雖然在XRD中并未發(fā)現(xiàn)FeP的相,但是元素分布發(fā)現(xiàn)Fe均勻的分布在整個(gè)電極中,證明鐵的均勻摻雜。鐵的電負(fù)性相對(duì)于Ni較高,適量摻雜鐵可能有利于減弱Ni-H之間的相互作用,加快Ni對(duì)氫原子的脫附過(guò)程,從而摻雜Fe原子占NiFe比為31.6 %的(Ni0.33Fe0.67)2P表現(xiàn)出最好的析氫活性。在OER中,Fe-摻雜的Ni2P作為NiFe-基催化劑,適度摻雜的鐵有利于抑制Ni向高價(jià)態(tài)的轉(zhuǎn)變,一定程度上有利于提高析氧活性。外加陣列結(jié)構(gòu)在親水的磷化物中引入的粗糙度,有利于減少氣體在三維電極表面的粘附力,加快溢出速度,增加工作穩(wěn)定性。在全水分解中也表現(xiàn)出與商業(yè)Pt/C、Ir/C可比擬的催化活性。3.半親半疏的摻氮碳納米陣列在氧還原反應(yīng)中的應(yīng)用。先利用水熱合成的方法在碳纖維紙上生長(zhǎng)Co(OH)2納米片陣列,后以三聚氰胺為N源,以Co(OH)2納米片陣列為催化劑,在碳纖維紙上直接生長(zhǎng)N摻雜的碳納米管陣列,表現(xiàn)出很高的親水性,通過(guò)毛細(xì)力作用,使親水碳納米管的一側(cè)為聚四氟乙烯(PTFE)修飾,在高溫下焙燒,PTFE修飾部分表現(xiàn)出疏水性,得到半親半疏的碳納米管陣列。其中,親水(疏氣)部分有利于液體的傳輸,為電解質(zhì)的快速通過(guò)通道同時(shí)作為反應(yīng)區(qū),疏水(親氣)部分可以形成氣體通道,' 快速收集和傳輸氣體,為反應(yīng)區(qū)提供反應(yīng)物,同時(shí)碳納米管直接生長(zhǎng)在導(dǎo)電集流體上保證了電子從集流體到催化劑的傳輸,有利于ORR的催化反應(yīng)。隨后通過(guò)調(diào)控PTFE在整個(gè)催化劑中所占比例,調(diào)控整個(gè)電極中親氣和疏氣的比例優(yōu)化氣體和液體傳輸通道的部分,達(dá)到最優(yōu)化的氧還原反應(yīng)效率。半親半疏電極不僅提供了氣體快速傳質(zhì)而且保障液體和電子高速傳輸,為氣體消耗電催化反應(yīng)的電極結(jié)構(gòu)化設(shè)計(jì)提供了一種思路。
[Abstract]:The electrocatalytic reactions involved in gas include gas spillover reactions (hydrogen evolution, oxygen evolution, chlorine evolution) and gas consumption reactions (oxygen reduction and hydrogen oxidation), which are important reactions involving some new energy sources: electrocatalytic hydrogen production, fuel cells (hydrogen oxygen, methanol fuel cells, etc.) and metal air batteries, to improve the efficiency of these electrocatalytic reactions. The rate and reduction of overpotential are of great significance for improving the conversion and storage efficiency of new energy and reducing the energy consumption of the reaction. It provides more possibilities for the new energy technology to replace the traditional energy. These catalytic processes involve the mass transfer process of gas and the opposite direction, that is, the gas spillover reaction requires gas to disconnect from the electrode table as soon as possible. In liquid phase mass transfer, gas consumption requires gas to rapidly transfer from the liquid to the surface of the electrode. Therefore, the electrocatalytic reaction of gas is not only necessary to reduce the overpotential of the catalytic reaction to reduce the energy consumption, but also to build a special infiltrative electrode surface to speed up the gas in the electrode. In this paper, a series of nanoscale arrays and surface modification are constructed to prepare a special infiltrative electrode structure. The mass transfer state and the related electrochemical properties of the gas and ions on the surface of the structured electrode are studied based on the structural advantage of the array, through the in-situ phosphating array. The precursor transformation is used to prepare three element metal phosphide as a bifunctional catalyst, and the properties of these new and structured electrodes in the electrocatalytic reaction of gas are studied. The specific contents are as follows: 1. the construction of Pt nanoscale arrays of super sparse gas and the electrochemical deposition of excellent hydrogen evolution under the constant potential and cyclic voltammetry under water The nano arrays and Pt nanospheres with different morphologies were prepared on the titanium substrate. As a contrast, Pt planar electrodes were prepared by ion sputtering. Three kinds of Pt electrodes with different surface roughness structures were studied. The adhesion behavior of bubbles and the contact behavior of bubbles under water and the activity in the electrocatalysis of hydrogen evolution were investigated. The Pt nanoarray with the highest roughness shows the properties of super sparse gas, the smallest interaction force with the bubble. In the process of electrocatalytic hydrogen evolution, it shows the size of the minimum gas overflow and the fast disengagement speed, and then the catalytic activity and stability also have good performance. It reveals that the interface can be changed by constructing the hydrophilic array structure. Wettability and then change the behavior of bubbles in the interface, in the electrocatalysis, it is beneficial to improve the spillover behavior of the bubbles and provides a way of building effective electrodes for other gas spillovers..2. array structured three metal phosphide is used as a bifunctional catalyst in the whole water decomposition, and Ni (N03) 2 and Co (N03) 2 are Ni sources, respectively. Co source, Ni-Co precursor nanoscale array was prepared by hydrothermal synthesis using urea as precipitant and nickel foam as the substrate. The array structure was used as template. The NiCoP nanoscale array electrode was obtained by in situ phosphating by CVD method. The electronic structure of the surface of mono metal phosphide was changed by doping, and the catalytic activity of hydrogen evolution was improved. Moreover, the catalytic activity of hydrogen evolution was improved. For the phosphide of a bifunctional catalyst, in the process of oxygen evolution, the valence of the transition metal ions is oxidized to the corresponding metal oxide or oxide before the peak potential of oxygen evolution, and the core and shell structure makes it good in the oxygen evolution reaction, and the highly ordered porous junction of the array structure. The roughness of the electrode surface is increased, the sparsely on the surface of the electrode is increased, the disturbance caused by the bubble separation is reduced, the stability of the oxygen evolution is increased, and the performance of the hydrogen evolution is also very good. The same method of hydrothermal synthesis is used to prepare the multi metal nanometers array and the subsequent in-situ phosphating method to change the feeding material. In the metal salt solution, iron doped Ni2P nanoscale arrays are synthesized on the foamed nickel. Although the phase of FeP is not found in XRD, the distribution of Fe is uniformly distributed in the whole electrode, which proves that the iron is even doped. The electronegativity of iron is higher than that of Ni. A proper doping of iron may help to weaken the interaction between Ni-H and accelerate N. I has the best hydrogen evolution activity for the desorption of hydrogen atoms, and the doping of Fe atoms with NiFe ratio of 31.6% (Ni0.33Fe0.67) 2P shows the best hydrogen evolution activity. In OER, Fe- doped Ni2P is a NiFe- based catalyst, and the moderately doped iron is beneficial to inhibit the transition of Ni to high valence state, to a certain extent, to improve the activity of oxygen evolution. The added array structure is hydrophilic. The roughness introduced in the phosphide is beneficial to reduce the adhesion of gas on the surface of the electrode, speed up the spillover speed and increase the stability of the work. In the whole water decomposition, the application of the catalytic activity.3., which is comparable to the commercial Pt/C, Ir/C, is used in the oxygen return. Co (OH) 2 nanoscale arrays were grown on carbon fiber paper, then melamine was used as N source and Co (OH) 2 nanoscale array was used as catalyst to direct the growth of N doped carbon nanotube arrays on carbon fiber paper, showing high hydrophilicity. By capillary force, the side of the hydrophilic carbon nanofilm was modified by polytetrafluoroethylene (PTFE) and roasted at high temperature. The PTFE modified part shows a hydrophobic and semi hydrophobic carbon nanotube array, in which the hydrophilic (sparsely) part is beneficial to the transmission of the liquid, the rapid passage of the electrolyte through the channel as the reaction zone, the hydrophobic (pro gas) part can form a gas channel, 'the gas is quickly collected and transmitted, and the reactant is provided for the reaction zone, and the carbon is also absorbed. The direct growth of the rice tube on the conductive collector ensures the transmission of the electron from the collector to the catalyst, and is beneficial to the catalytic reaction of ORR. Then the optimum oxygen reduction reaction efficiency is achieved by regulating the proportion of the PTFE in the whole catalyst and regulating the proportion of the gas and the liquid transmission channel in the proportion of the whole electrode. The semi parent and semi sparse electrode not only provides rapid mass transfer of gas but also ensures high speed transmission of liquid and electrons. It provides a way of thinking for the structural design of the electrode for the electrocatalytic reaction of gas consumption.

【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O643.32;O646.5

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 曹立新;閆培生;孫克寧;D.W.Kirk;;納米陣列電極研究[J];化學(xué)進(jìn)展;2008年09期

2 劉霞;;利用納米陣列技術(shù) 基因測(cè)序成本降至5000美元[J];科學(xué)咨詢(決策管理);2009年12期

3 林莎莎;鐘福新;;一維納米陣列的制備及其在傳感器中的應(yīng)用[J];梧州學(xué)院學(xué)報(bào);2009年06期

4 王斌;羊鉞;劉磊;;基于泊肅葉公式的納米陣列孔徑測(cè)量[J];機(jī)械工程與自動(dòng)化;2011年04期

5 左娟,孫嵐,林昌健;納米陣列結(jié)構(gòu)功能材料的制備、性質(zhì)及應(yīng)用[J];電子元件與材料;2003年12期

6 郭子政;宣志國(guó);張?jiān)荷?安彩虹;;納米陣列膜磁性質(zhì)的蒙特卡羅模擬[J];信息記錄材料;2008年03期

7 李會(huì)峰;黃運(yùn)華;張躍;高祥熙;趙婧;王建;;摻銦氧化鋅納米陣列的制備、結(jié)構(gòu)及性質(zhì)研究[J];物理學(xué)報(bào);2009年04期

8 ;創(chuàng)新地圖[J];IT經(jīng)理世界;2012年07期

9 王宇;劉浪;吳大平;郭玉忠;王劍華;;納米陣列和納米晶薄膜錫電極性質(zhì)的電化學(xué)研究[J];稀有金屬材料與工程;2012年09期

10 林紅巖;于翠艷;許濤;;氧化鋁模板制備鎳納米陣列[J];新技術(shù)新工藝;2006年08期

相關(guān)會(huì)議論文 前10條

1 甘小燕;李效民;高相東;邱繼軍;諸葛福偉;;一維半導(dǎo)體納米陣列的制備及其在太陽(yáng)電池中的應(yīng)用[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年

2 吳明Z;楊賢鋒;趙豐華;周強(qiáng);田俐;;氧化物納米陣列材料的液相制備和結(jié)構(gòu)調(diào)控[A];第十二屆固態(tài)化學(xué)與無(wú)機(jī)合成學(xué)術(shù)會(huì)議論文摘要集[C];2012年

3 楊秋;劉熙俊;劉軍楓;孫曉明;;多級(jí)納米陣列及其催化性能研究[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第34分會(huì):納米催化[C];2014年

4 楊秋;陸之毅;李甜;劉軍楓;孫曉明;;多層級(jí)納米陣列的合成及其超電容性能研究[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第24分會(huì):化學(xué)電源[C];2014年

5 唐紀(jì)琳;Andreas Ebner;Uwe B.Sleytr;Nicola Ilk;Peter Hinterdorfer;;基于功能化S-層蛋白納米陣列的單分子識(shí)別[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第09分會(huì)場(chǎng)摘要集[C];2010年

6 陳鵬磊;高鵬;劉鳴華;;氣/液二維界面上的超分子組裝:構(gòu)鍵規(guī)則微/納米陣列結(jié)構(gòu)的簡(jiǎn)單便捷的方法[A];中國(guó)化學(xué)會(huì)第十一屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2007年

7 安哲;何靜;;水滑石納米陣列納微結(jié)構(gòu)提高酶電子傳遞性能[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第1分會(huì)場(chǎng)摘要集[C];2012年

8 季書(shū)林;葉長(zhǎng)輝;張立德;;復(fù)配無(wú)機(jī)光吸附層的垂直排列的氧化物納米陣列太陽(yáng)能電池研究進(jìn)展[A];安徽新能源技術(shù)創(chuàng)新與產(chǎn)業(yè)發(fā)展博士科技論壇論文集[C];2010年

9 孫萍;徐嶺;趙偉明;李衛(wèi);徐駿;馬忠元;黃信凡;陳坤基;;基于膠體球刻蝕法制備的有序半導(dǎo)體納米陣列及其光學(xué)性質(zhì)的研究[A];第十六屆全國(guó)半導(dǎo)體物理學(xué)術(shù)會(huì)議論文摘要集[C];2007年

10 倪賽力;常永勤;陳喜紅;張寅虎;多永正;強(qiáng)文江;龍毅;;氧化鋅納米陣列場(chǎng)發(fā)射性能研究[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(2)[C];2007年

相關(guān)重要報(bào)紙文章 前1條

1 ;納米陣列實(shí)現(xiàn)Tb級(jí)存儲(chǔ)密度[N];計(jì)算機(jī)世界;2003年

相關(guān)博士學(xué)位論文 前10條

1 李英杰;新型納米陣列電極的構(gòu)建及其在氣體參與的電催化反應(yīng)中的應(yīng)用[D];北京化工大學(xué);2017年

2 陸之毅;納米陣列合成及其電化學(xué)性能研究[D];北京化工大學(xué);2015年

3 楊秋;多層級(jí)納米陣列的構(gòu)筑及其電化學(xué)性能研究[D];北京化工大學(xué);2015年

4 王霖;SiC納米陣列結(jié)構(gòu)調(diào)控及其場(chǎng)發(fā)射特性研究[D];北京科技大學(xué);2016年

5 郭迪;金屬氧化物納米陣列結(jié)構(gòu)的合成及其超電容性能的研究[D];湖南大學(xué);2015年

6 劉陽(yáng);氧化鋅納米陣列紫外探測(cè)增強(qiáng)效應(yīng)研究[D];華中科技大學(xué);2016年

7 崔亮;負(fù)載型納米陣列的制備及其在催化水解制氫和電化學(xué)析氧反應(yīng)中的應(yīng)用研究[D];青島大學(xué);2017年

8 周張凱;貴金屬納米陣列等離激元光學(xué)性質(zhì)研究[D];武漢大學(xué);2011年

9 張鵬;鈷鎳基金屬氧化物納米陣列結(jié)構(gòu)的制備及其在超級(jí)電容器中的應(yīng)用[D];蘭州大學(xué);2017年

10 邊捷;納米陣列圖案表面浸潤(rùn)性研究[D];南京大學(xué);2014年

相關(guān)碩士學(xué)位論文 前10條

1 翁習(xí)文;過(guò)渡金屬氧化物納米陣列的設(shè)計(jì)合成與性能研究[D];北京化工大學(xué);2013年

2 滕翼;Cu/Fe表面修飾TiO_2納米陣列的制備及光催化性能的研究[D];清華大學(xué);2014年

3 李湘奇;ZnO納米陣列的制備、改性及性能研究[D];西南交通大學(xué);2015年

4 張永輝;模板法構(gòu)筑銀膜陷阱結(jié)構(gòu)及其在抑制微放電中的應(yīng)用[D];陜西科技大學(xué);2015年

5 韓建華;ZnO/硫化物核/殼納米陣列及其光伏性能研究[D];天津城建大學(xué);2015年

6 李敏;稀土/聚氨酯納米陣列發(fā)光材料的制備及性能研究[D];鄭州輕工業(yè)學(xué)院;2015年

7 呂朋雨;基于單分子蛋白質(zhì)測(cè)序芯片的研究[D];上海交通大學(xué);2015年

8 楚家玉;Ag/N-TiO_2納米陣列的制備及表面等離激元誘導(dǎo)偶聯(lián)反應(yīng)[D];哈爾濱工業(yè)大學(xué);2015年

9 鄭遠(yuǎn)川;碳化蝶翅及其復(fù)合材料的制備和性能研究[D];西南科技大學(xué);2015年

10 張成龍;多級(jí)納米陣列結(jié)構(gòu)光電陽(yáng)極材料的制備及性能研究[D];北京化工大學(xué);2015年

,

本文編號(hào):1822737

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxue/1822737.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9bd54***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com